

ng-book
The Complete Guide to Angular

Written by Nate Murray, Felipe Coury, Ari Lerner, and Carlos
Taborda

© 2020 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means beyond
the number of purchased copies, except for a single backup or archival copy. The
code may be used freely in your projects, commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential
damagers in connection with or arising out of the use of the information or
programs container herein.

Published in San Francisco, California by Fullstack.io.

FULLSTACK.io

We’d like to thank our contributors to this book including:

• Frode Fikke for technical edits
• Nic Raboy, and Burke Holland for their contribution to the NativeScript chapter
• Travas Nolte for his work on many chapters
• Daniel Rauf for his edits on RxJS, Redux, and Routing

https://www.nraboy.com/
http://developer.telerik.com/author/burkeholland/

Contents

Book Revision . 1
Join our Discord Chat . 1
Vote for New Content (new!) . 1
Be notified of updates via Twitter . 1
Bug Reports . 1
We’d love to hear from you! . 1
Become A Technical Contributor - Free Updates for Life 2
Special Thanks to Our Technical Contributors 2

How to Read This Book . 3
Running Code Examples . 3

Angular CLI . 4
Code Blocks and Context . 4

Code Block Numbering . 5
A Word on Versioning . 5
Getting Help . 6
Emailing Us . 7
Chapter Overview . 7

Writing Your First Angular Web Application 1
Simple Reddit Clone . 1
Getting started . 4

Node.js and npm . 4
TypeScript . 4
Browser . 5

Special instruction for Windows users . 5
Angular CLI . 5
Example Project . 6

CONTENTS

Running the application . 11
Making a Component . 13
Importing Dependencies . 15
Component Decorators . 16
Adding a template with templateUrl . 17
Adding a template . 17
Adding CSS Styles with styleUrls . 18
Loading Our Component . 19

Adding Data to the Component . 20
Working With Arrays . 24
Using the User Item Component . 28

Rendering the UserItemComponent . 29
Accepting Inputs . 30
Passing an Input value . 31

Bootstrapping Crash Course . 33
declarations . 35
imports . 35
providers . 36
bootstrap . 36

Expanding our Application . 36
Adding CSS . 38
The Application Component . 39
Adding Interaction . 41
Adding the Article Component . 46

Rendering Multiple Rows . 56
Creating an Article class . 56
Storing Multiple Articles . 61
Configuring the ArticleComponent with inputs 63
Rendering a List of Articles . 65

Adding New Articles . 67
Finishing Touches . 68

Displaying the Article Domain . 68
Re-sorting Based on Score . 69

Deployment . 70
Building Our App for Production . 71
Uploading to a Server . 72

CONTENTS

Installing now . 72
Full Code Listing . 73
Wrapping Up . 73
Getting Help . 73

TypeScript . 74
Angular is built in TypeScript . 74
What do we get with TypeScript? . 76
Types . 77

Trying it out with a REPL . 79
Built-in types . 79
Classes . 82

Properties . 82
Methods . 83
Constructors . 85
Inheritance . 87

Utilities . 89
Fat Arrow Functions . 89
Template Strings . 91

Wrapping up . 92

How Angular Works . 93
Application . 93

The Navigation Component . 95
The Breadcrumbs Component . 95
The Product List Component . 95

How to Use This Chapter . 98
Product Model . 99
Components . 100
Component Decorator . 103

Component selector . 103
Component template . 104
Adding A Product . 104
Viewing the Product with Template Binding 107
Adding More Products . 107
Selecting a Product . 109

CONTENTS

Listing products using <products-list> 109
The ProductsListComponent . 113

Configuring the ProductsListComponent @Component Options 113
Component inputs . 114
Component outputs . 116
Emitting Custom Events . 118
Writing the ProductsListComponent Controller Class 120
Writing the ProductsListComponent View Template 121
The Full ProductsListComponent Component 123

The ProductRowComponent Component . 125
ProductRowComponent Configuration . 126
ProductRowComponent template . 127

The ProductImageComponent Component . 128
The PriceDisplayComponent Component . 128
The ProductDepartmentComponent . 129
NgModule and Booting the App . 131

Booting the app . 132
The Completed Project . 133
Deploying the App . 134
A Word on Data Architecture . 135

Built-in Directives . 137
Introduction . 137
NgIf . 137
NgSwitch . 138
NgStyle . 140
NgClass . 143
NgFor . 147

Getting an index . 152
NgNonBindable . 153
Conclusion . 154

Forms in Angular . 155
Forms are Crucial, Forms are Complex . 155
FormControls and FormGroups . 156

FormControl . 156

CONTENTS

FormGroup . 157
Our First Form . 158

Loading the FormsModule . 159
Reactive- vs. template-driven Forms . 160
Simple SKU Form: @Component Decorator 160
Simple SKU Form: template . 161
Simple SKU Form: Component Definition Class 165
Try it out! . 166

Using FormBuilder . 167
Reactive Forms with FormBuilder . 168

Using FormBuilder . 168
Using myForm in the view . 170
Try it out! . 171

Adding Validations . 173
Explicitly setting the sku FormControl as an instance variable 174
Custom Validations . 179

Watching For Changes . 181
ngModel . 183
Wrapping Up . 185

Dependency Injection . 186
Injections Example: PriceService . 187
Dependency Injection Parts . 192
Playing with an Injector . 193
Providing Dependencies with NgModule . 196

Providers are the Key . 198
Providers . 199

Using a Class . 199
Using a Factory . 204

Dependency Injection in Apps . 207
More Resources . 207

HTTP . 208
Introduction . 208
Using @angular/common/http . 209

import from @angular/common/http . 209

CONTENTS

A Basic Request . 211
Building the SimpleHttpComponent Component Definition 212
Building the SimpleHttpComponent template 212
Building the SimpleHttpComponent Controller 213
Full SimpleHttpComponent . 214

Writing a YouTubeSearchComponent . 215
Writing a SearchResult . 217
Writing the YouTubeSearchService . 218
Writing the SearchBoxComponent . 224
Writing SearchResultComponent . 232
Writing YouTubeSearchComponent . 233

@angular/common/http API . 237
Making a POST request . 238
PUT / PATCH / DELETE / HEAD . 238
Custom HTTP Headers . 239
Summary . 240

Routing . 241
Why Do We Need Routing? . 241
How client-side routing works . 242

The beginning: using anchor tags . 243
The evolution: HTML5 client-side routing 244

Writing our first routes . 245
Components of Angular routing . 245

Imports . 245
Routes . 246
Installing our Routes . 248
RouterOutlet using <router-outlet> 248
RouterLink using [routerLink] . 250

Putting it all together . 251
Creating the Components . 253
HomeComponent . 253
AboutComponent . 254
ContactComponent . 255
Application Component . 256
Configuring the Routes . 257

CONTENTS

Routing Strategies . 259
Running the application . 260
Route Parameters . 263

ActivatedRoute . 264
Music Search App . 265

First Steps . 267
The SpotifyService . 268
The SearchComponent . 269
Trying the search . 280
TrackComponent . 282
Wrapping up music search . 284

Router Hooks . 285
AuthService . 286
LoginComponent . 288
ProtectedComponent and Route Guards 290

Nested Routes . 297
Configuring Routes . 297
ProductsModule . 298

Summary . 304

Data Architecture in Angular . 305
An Overview of Data Architecture . 305

Data Architecture in Angular . 306

Data Architecture with Observables - Part 1: Services 308
Observables and RxJS . 308

Note: Some RxJS Knowledge Required 308
Learning Reactive Programming and RxJS 309

Chat App Overview . 310
Components . 312
Models . 313
Services . 314
Summary . 314

Implementing the Models . 315
User . 315
Thread . 316

CONTENTS

Message . 316
Implementing UsersService . 318

currentUser stream . 319
Setting a new user . 319
UsersService.ts . 321

The MessagesService . 322
the newMessages stream . 322
the messages stream . 324
The Operation Stream Pattern . 324
Sharing the Stream . 326
Adding Messages to the messages Stream 327
Our completed MessagesService . 332
Trying out MessagesService . 335

The ThreadsService . 337
A map of the current set of Threads (in threads) 337
A chronological list of Threads, newest-first (in orderedthreads) . . . 342
The currently selected Thread (in currentThread) 343
The list of Messages for the currently selected Thread (in current-

ThreadMessages) . 345
Our Completed ThreadsService . 348

Data Model Summary . 350

Data Architecture with Observables - Part 2: View Components 351
Building Our Views: The AppComponent Top-Level Component 351
The ChatThreadsComponent . 354

ChatThreadsComponent template . 355
The Single ChatThreadComponent . 356

ChatThreadComponent Controller and ngOnInit 357
ChatThreadComponent template . 358

The ChatWindowComponent . 358
The ChatMessageComponent . 370

The ChatMessageComponent template . 372
The ChatNavBarComponent . 373

The ChatNavBarComponent @Component 373
The ChatNavBarComponent template . 375

Summary . 376

CONTENTS

Introduction to Redux with TypeScript . 378
Redux . 379

Redux: Key Ideas . 380
Core Redux Ideas . 381

What’s a reducer? . 381
Defining Action and Reducer Interfaces 382
Creating Our First Reducer . 383
Running Our First Reducer . 384
Adjusting the Counter With actions . 385
Reducer switch . 387
Action “Arguments” . 388

Storing Our State . 389
Using the Store . 391
Being Notified with subscribe . 391
The Core of Redux . 396

A Messaging App . 397
Messaging App state . 397
Messaging App actions . 398
Messaging App reducer . 399
Trying Out Our Actions . 403
Action Creators . 404
Using Real Redux . 406

Using Redux in Angular . 407
Planning Our App . 408
Setting Up Redux . 409

Defining the Application State . 409
Defining the Reducers . 409
Defining Action Creators . 410
Creating the Store . 411

Providing the Store . 413
Bootstrapping the App . 415
The AppComponent . 416

imports . 416
The template . 417
The constructor . 418
Putting It All Together . 420

CONTENTS

What’s Next . 420
References . 421

Intermediate Redux in Angular . 422
Context For This Chapter . 423
Chat App Overview . 423

Components . 424
Models . 424
Reducers . 425
Summary . 425

Implementing the Models . 426
User . 426
Thread . 427
Message . 427

App State . 428
A Word on Code Layout . 428
The Root Reducer . 429
The UsersState . 430
The ThreadsState . 430
Visualizing Our AppState . 431

Building the Reducers (and Action Creators) 433
Set Current User Action Creators . 433
UsersReducer - Set Current User . 434
Thread and Messages Overview . 435
Adding a New Thread Action Creators 436
Adding a New Thread Reducer . 436
Adding New Messages Action Creators 438
Adding A New Message Reducer . 439
Selecting A Thread Action Creators . 441
Selecting A Thread Reducer . 442
Reducers Summary . 443

Building the Angular Chat App . 444
The top-level AppComponent . 445
The ChatPage . 447
Container vs. Presentational Components 448

Building the ChatNavBarComponent . 449

CONTENTS

Redux Selectors . 451
Threads Selectors . 453
Unread Messages Count Selector . 454

Building the ChatThreadsComponent . 455
ChatThreadsComponent Controller . 456
ChatThreadsComponent template . 457

The Single ChatThreadComponent . 458
ChatThreadComponent template . 460

Building the ChatWindowComponent . 461
The ChatMessageComponent . 469

Setting incoming . 470
The ChatMessageComponent template . 470

Summary . 472

Advanced Components . 473
Styling . 474

View (Style) Encapsulation . 476
Shadow DOM Encapsulation . 481
No Encapsulation . 482

Creating a Popup - Referencing and Modifying Host Elements 485
Popup Structure . 486
Using ElementRef . 488
Binding to the host . 490
Adding a Button using exportAs . 493

Creating a Message Pane with Content Projection 495
Changing the Host’s CSS . 497
Using ng-content . 497

Querying Neighbor Directives - Writing Tabs 499
ContentTabComponent . 500
ContentTabsetComponent Component 501
Using the ContentTabsetComponent . 504

Lifecycle Hooks . 505
OnInit and OnDestroy . 506
OnChanges . 511
DoCheck . 517

CONTENTS

AfterContentInit, AfterViewInit, AfterContentChecked and After-
ViewChecked . 531

Advanced Templates . 538
Rewriting ngIf - ngBookIf . 539
Rewriting ngFor - NgBookFor . 542

Change Detection . 548
Customizing Change Detection . 553
Zones . 561
Observables and OnPush . 562

Summary . 567

Testing . 568
Test driven? . 568
End-to-end vs. Unit Testing . 569
Testing Tools . 569

Jasmine . 569
Karma . 570

Writing Unit Tests . 571
Angular Unit testing framework . 571
Setting Up Testing . 572
Testing Services and HTTP . 573

HTTP Considerations . 574
Stubs . 575
Mocks . 576
HttpClient HttpTestingController . 577
TestBed.configureTestingModule and Providers 578
Testing getTrack . 578

Testing Routing to Components . 585
Creating a Router for Testing . 586
Mocking dependencies . 589
Spies . 590

Back to Testing Code . 594
fakeAsync and advance . 596
inject . 597
Testing ArtistComponent’s Initialization 598
Testing ArtistComponent Methods . 599

CONTENTS

Testing ArtistComponent DOM Template Values 600
Testing Forms . 603

Creating a ConsoleSpy . 606
Installing the ConsoleSpy . 607
Configuring the Testing Module . 608
Testing The Form . 609
Refactoring Our Form Test . 611

Testing HTTP requests . 615
Testing a POST . 615
Testing DELETE . 618
Testing HTTP Headers . 619
Testing YouTubeSearchService . 621

Conclusion . 628

Converting an AngularJS 1.x App to Angular 629
Peripheral Concepts . 629
What We’re Building . 630
Mapping AngularJS 1 to Angular . 632
Requirements for Interoperability . 634
The AngularJS 1 App . 635

The ng1-app HTML . 636
Code Overview . 638
ng1: PinsService . 638
ng1: Configuring Routes . 640
ng1: HomeController . 641
ng1: / HomeController template . 641
ng1: pin Directive . 642
ng1: pin Directive template . 643
ng1: AddController . 644
ng1: AddController template . 647
ng1: Summary . 649

Building A Hybrid . 649
Hybrid Project Structure . 650
Bootstrapping our Hybrid App . 653
What We’ll Upgrade . 655
A Minor Detour: Typing Files . 658

CONTENTS

Writing ng2 PinControlsComponent . 662
Using ng2 PinControlsComponent . 664
Downgrading ng2 PinControlsComponent to ng1 665
Adding Pins with ng2 . 668
Upgrading ng1 PinsService and $state to ng2 669
Writing ng2 AddPinComponent . 670
Using AddPinComponent . 677
Exposing an ng2 service to ng1 . 678
Writing the AnalyticsService . 678
Downgrade ng2 AnalyticsService to ng1 679
Using AnalyticsService in ng1 . 680

Summary . 681
References . 682

NativeScript: Mobile Applications for the Angular Developer 683
What is NativeScript? . 683

Where NativeScript Differs from Other Popular Frameworks 684
What are the System and Development Requirements for NativeScript? 685

Creating your First Mobile Application with NativeScript and Angular . . 688
Adding Build Platforms for Cross Platform Deployment 688
Building and Testing for Android and iOS 689
Installing JavaScript, Android, and iOS Plugins and Packages 690

Understanding the Web to NativeScript UI and UX Differences 690
Planning the NativeScript Page Layout 691
Adding UI Components to the Page . 692
Styling Components with CSS . 694

Developing a Geolocation Based Photo Application 696
Creating a Fresh NativeScript Project . 697
Creating a Multiple Page Master-Detail Interface 697
Creating a Flickr Service for Obtaining Photos and Data 701
Creating a Service for Calculating Device Location and Distance . . . 707
Including Mapbox Functionality in the NativeScript Application . . . 710
Implementing the First Page of the Geolocation Application 712
Implementing the Second Page of the Geolocation Application 718

Try it out! . 719
NativeScript for Angular Developers . 720

CONTENTS

Changelog . 721
Revision 76 - 2020-02-12 . 721
Revision 75 - 2019-12-13 . 721
Revision 74 - 2019-05-30 . 721
Revision 73 - 2019-01-08 . 721
Revision 72 - 2018-12-12 . 722
Revision 71 - 2018-10-23 . 722
Revision 70 - 2018-09-13 . 722
Revision 69 - 2018-09-08 . 722
Revision 68 - 2018-05-08 . 723
Revision 67 - 2018-01-17 . 723
Revision 66 - 2017-11-14 . 723
Revision 65 - 2017-11-01 . 723
Revision 64 - 2017-09-15 . 723
Revision 63 - 2017-08-02 . 723
Revision 62 - 2017-06-23 . 723
Revision 61 - 2017-05-24 . 724
Revision 60 - 2017-04-27 . 724
Revision 59 - 2017-04-07 . 724
Revision 58 - 2017-03-24 . 725
Revision 57 - 2017-03-23 . 725
Revision 56 - 2017-03-22 . 725
Revision 55 - 2017-03-17 . 725
Revision 54 - 2017-03-10 . 726
Revision 53 - 2017-03-01 . 726
Revision 52 - 2017-02-22 . 726
Revision 51 - 2017-02-14 . 727
Revision 50 - 2017-02-10 . 727
Revision 49 - 2017-01-18 . 727
Revision 48 - 2017-01-13 . 727
Revision 47 - 2017-01-06 . 727
Revision 46 - 2017-01-03 . 727
Revision 45 - 2016-12-05 . 727
Revision 44 - 2016-11-17 . 728
Revision 43 - 2016-11-08 . 728
Revision 42 - 2016-10-14 . 728

CONTENTS

Revision 41 - 2016-09-28 . 729
Revision 40 - 2016-09-20 . 729
Revision 39 - 2016-09-03 . 729
Revision 38 - 2016-08-29 . 729
Revision 37 - 2016-08-02 . 729
Revision 36 - 2016-07-20 . 730
Revision 35 - 2016-06-30 . 730
Revision 34 - 2016-06-15 . 730
Revision 33 - 2016-05-11 . 730
Revision 32 - 2016-05-06 . 730
Revision 31 - 2016-04-28 . 731
Revision 30 - 2016-04-20 . 731
Revision 29 - 2016-04-08 . 732
Revision 28 - 2016-04-01 . 732
Revision 27 - 2016-03-25 . 732
Revision 26 - 2016-03-24 . 732
Revision 25 - 2016-03-21 . 732
Revision 24 - 2016-03-10 . 732
Revision 23 - 2016-03-04 . 732
Revision 22 - 2016-02-24 . 733
Revision 21 - 2016-02-20 . 733
Revision 20 - 2016-02-11 . 734
Revision 19 - 2016-02-04 . 734
Revision 18 - 2016-01-29 . 734
Revision 17 - 2016-01-28 . 734
Revision 16 - 2016-01-14 . 734
Revision 15 - 2016-01-07 . 735
Revision 14 - 2015-12-23 . 735
Revision 13 - 2015-12-17 . 735
Revision 12 - 2015-11-16 . 736
Revision 11 - 2015-11-09 . 736
Revision 10 - 2015-10-30 . 737
Revision 9 - 2015-10-15 . 737
Revision 8 - 2015-10-08 . 738
Revision 7 - 2015-09-23 . 738
Revision 6 - 2015-08-28 . 738

CONTENTS

Revision 5 - 2015-08-01 . 738
Revision 4 - 2015-07-30 . 738
Revision 3 - 2015-07-21 . 739
Revision 2 - 2015-07-15 . 739
Revision 1 - 2015-07-01 . 739

CONTENTS 1

Book Revision

Revision 76 - Covers up to Angular 9 (9.0.0, 2020-02-13)

Join our Discord Chat

Come join our community chat in Discord here¹.

Vote for New Content (new!)

We’re constantly updating the book, writing new blog posts, and producing new
material. You can now cast your vote for new content here².

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio³

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: us@fullstack.io⁴.

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list
of testimonials on the website! Email us at: us@fullstack.io⁵.

¹https://www.newline.co/discord/ng-book
²https://fullstackio.canny.io/ng-book
³https://twitter.com/fullstackio
⁴mailto:us@fullstack.io?Subject=ng-book%202%20feedback
⁵mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

https://www.newline.co/discord/ng-book
https://fullstackio.canny.io/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20feedback
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial
https://www.newline.co/discord/ng-book
https://fullstackio.canny.io/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20feedback
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

CONTENTS 2

Become A Technical Contributor - Free
Updates for Life

If we merge a pull request you’ve submitted, you’ll earn the “Contributor” badge on
Discord and a Technical Contributor Credit in the Book. Contributors receive free
updates for life.

If you’d like to become a Contributor to ng-book, join the Discord channel⁶ and
request access to the Git repository from me (Nate, @eigenjoy)

Special Thanks to Our Technical Contributors

• Frode Fikke for technical edits
• Nic Raboy, and Burke Holland for their contribution to the NativeScript chapter
â€¢ Travas Nolte for his work on many chapters

• Daniel Rauf for his edits on RxJS, Redux, and Routing
• Robbie Smith for his edits on RxJS

⁶https://www.newline.co/discord/ng-book

https://www.newline.co/discord/ng-book
https://www.newline.co/discord/ng-book

How to Read This Book
This book aims to be the single most useful resource on learning Angular. By the
time you’re done reading this book, you (and your team) will have everything you
need to build reliable, powerful Angular apps.

Angular is a rich and feature-filled framework, but that also means it can be tricky to
understand all of its parts. In this book, we’ll walk through everything from installing
the tools, writing components, using forms, routing between pages, and calling APIs.

But before we dig in, there are a few guidelines I want to give you in order to get
the most out of this book. Briefly, I want to tell you:

• how to approach the code examples and
• how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. The code is available to
download from the same place where you downloaded this book.

We use the program npm⁷ to run every example in this book. This means you can
type the following commands to run any example:

npm install

npm start

If you’re unfamiliar with npm, we cover how to get it installed in the Getting
Started section in the first chapter.

⁷https://www.npmjs.com/

https://www.npmjs.com/
https://www.npmjs.com/

How to Read This Book 4

After running npm start, you will see some output on your screen that will tell you
what URL to open to view your app.

If you’re ever unclear on how to run a particular sample app, check out the
README.md in that project’s directory. Every sample project contains a README.md

that will give you the instructions you need to run each app.

Angular CLI

With a couple of minor exceptions, every project in this book was built on Angular
CLI⁸. Unless specified otherwise, you can use the ng commands in each project.

For instance, to run an example you can run ng serve (this is, generally, what is run
when you type npm start). For most projects you can compile them to JavaScript
with ng build (we’ll talk about this more in the first chapter). And you can run end-
to-end tests with ng e2e, etc.

Without getting too far into the details, Angular CLI is based on Webpack, a tool
which helps process and bundle our various TypeScript, JavaScript, CSS, HTML,
and image files. Angular CLI is not a requirement for using Angular. It’s simply a
wrapper around Webpack (and some other tooling) that makes it easy to get started.

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example, which
you can find in the sample code. For example, here is a code block pulled from the
first chapter:

code/first-app/angular-hello-world/src/app/app.component.ts

8 export class AppComponent {

9 title = 'angular-hello-world';

10 }

Notice that the header of this code block states the path to the file which contains
this code: code/first-app/angular-hello-world/src/app/app.component.ts.

⁸https://github.com/angular/angular-cli

https://github.com/angular/angular-cli
https://github.com/angular/angular-cli
https://github.com/angular/angular-cli

How to Read This Book 5

If you ever feel like you’re missing the context for a code example, open up the full
code file using your favorite text editor. This book is written with the expectation
that you’ll also be looking at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early
chapters of the book we show these import statements, because it’s not clear where
the libraries are coming from otherwise. However, the later chapters of the book are
more advanced and they focus on key concepts instead of repeating boilerplate code
that was covered earlier in the book. If at any point you’re not clear on the context,
open up the code example on disk.

Code Block Numbering

In this book, we sometimes build up a larger example in steps. If you see a file
being loaded that has a numeric suffix, that generally means we’re building up to
something bigger.

For instance, in the Dependency Injection chapter you may see a code block with the
filename: price.service.1.ts. When you see the .N.ts syntax that means we’re
building up to the ultimate file, which will not have a number. So, in this case, the
final version would be: price.service.ts. We do it this way so that a) we can unit
test the intermediate code and b) you can see the whole file in context at a particular
stage.

A Word on Versioning

As you may know, the Angular covered in this book is a descendant of an earlier
framework called “AngularJS”. This can sometimes be confusing, particularly when
reading supplementary blogs or documentation.

The official branding guidelines state that “AngularJS” is a term reserved for
AngularJS 1.x, that is, the early versions of “Angular”.

Because the new version of Angular used TypeScript (instead of JavaScript) as the
primary language, the ‘JS’ was dropped, leaving us with justAngular. For a long time
the only consistent way to distinguish the two was folks referred to the new Angular
as Angular 2.

How to Read This Book 6

However, the Angular team in 2017 switched to semantic versioning with a new
major-release upgrade slated for every 6 months. Instead of calling the next versions
Angular 4, Angular 5, and so on, the number is also dropped and it’s just Angular.

In this book, when we’re referring to Angular we’ll just say Angular or some-
times Angular X, just to avoid confusion. When we’re talking about “the old-style
JavaScript Angular” we’ll use the term AngularJS or AngularJS 1.x.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that
when you’re writing your code you run into a problem.

Generally, there are three types of problems:

• A “bug” in the book (e.g. how we describe something is wrong)
• A “bug” in our code
• A “bug” in your code

Your first line of defense, when getting help with your custom app, should be to
join our community chat room⁹. We (the authors) are usually there, but there are
hundreds of other readers there who may be able to help you faster than we can.

If you find an inaccuracy in how we describe something, or you feel a concept isn’t
clear, reach out in Discord! We want to make sure that the book is both accurate and
clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it either
in Discord or via email.

If you’re having trouble getting your own app working (and it isn’t our example
code), this case is a bit harder for us to handle, but hop in Discord and folks are
happy to help diagnose.

If you’re still stuck, we’d still love to hear from you, and here are some tips for getting
a clear, timely response.

⁹https://newline.co/discord/ng-book

https://newline.co/discord/ng-book
https://newline.co/discord/ng-book

How to Read This Book 7

Emailing Us

If you’re emailing us asking for technical help, here’s what we’d like to know:

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?
• What have you tried¹⁰ already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained
example of the problem.

But in any case email us at us@fullstack.io¹¹. We look forward to hearing from you.

Chapter Overview

Before we dive in, I want to give you a feel for the rest of the book and what you can
expect inside.

The first few chapters provide the foundation you need to get up and running
with Angular. You’ll create your first apps, use the built-in components, and start
creating your components.

Next we’ll move into intermediate concepts such as using forms, usingAPIs, routing
to different pages, and using Dependency Injection to organize our code.

After that, we’ll move into more advanced concepts. We spend a good part of the
book talking about data architectures. Managing state in client/server applications
is hard and we dive deep into two popular approaches: using RxJS Observables and
using Redux. In these chapters, we’ll show how to build the same app, two different

¹⁰http://mattgemmell.com/what-have-you-tried/
¹¹mailto:us@fullstack.io

http://mattgemmell.com/what-have-you-tried/
mailto:us@fullstack.io
http://mattgemmell.com/what-have-you-tried/
mailto:us@fullstack.io

How to Read This Book 8

ways, so you can compare and contrast and evaluate what’s best for you and your
team.

After that, we’ll discuss how to write complex, advanced components using
Angular’s most powerful features. Then we talk about how to write tests for our
app and how we can upgrade our Angular 1 apps to Angular. Finally, we close
with a chapter on writing native mobile apps with Angular using NativeScript.

By using this book, you’re going to learn how to build real Angular apps faster
than spending hours parsing out-dated blog posts.

So hold on tight - you’re about to become an Angular expert, and have a lot of fun
along the way. Let’s dig in!

• Nate (@eigenjoy¹²)

¹²https://twitter.com/eigenjoy

https://twitter.com/eigenjoy
https://twitter.com/eigenjoy

Writing Your First Angular Web
Application
Simple Reddit Clone

In this chapter we’re going to build an application that allows the user to post an
article (with a title and a URL) and then vote on the posts.

You can think of this app as the beginnings of a site like Reddit¹³ or Product Hunt¹⁴.

In this simple app we’re going to cover most of the essentials of Angular including:

• Building custom components
• Accepting user input from forms
• Rendering lists of objects into views
• Intercepting user clicks and acting on them
• Deploying our app to a server

By the time you’re finished with this chapter you’ll know how to take an empty
folder, build a basic Angular application, and deploy it to production. After working
through this chapter you’ll have a good grasp on how Angular applications are built
and a solid foundation to build your own Angular app.

Here’s a screenshot of what our app will look like when it’s done:

¹³http://reddit.com
¹⁴http://producthunt.com

http://reddit.com/
http://producthunt.com/
http://reddit.com/
http://producthunt.com/

Writing Your First Angular Web Application 2

Completed application

First, a user will submit a new link and after submitting the users will be able to
upvote or downvote each article. Each link will have a score and we can vote on
which links we find useful.

Writing Your First Angular Web Application 3

App with new article

In this project, and throughout the book, we’re going to use TypeScript. TypeScript is
a superset of JavaScript ES6 that adds types. We’re not going to talk about TypeScript
in depth in this chapter, but we’ll go over TypeScript more in depth in the next
chapter.

Don’t worry if you’re having trouble with some of the new syntax. If you’re familiar
with ES5 (“normal” JavaScript) / ES6 (ES2015) you should be able to follow along and
we’ll talk more about TypeScript in a bit.

Writing Your First Angular Web Application 4

Getting started

Node.js and npm

To get started with Angular, you’ll need to have Node.js installed. There are a couple
of different ways you can install Node.js, so please refer to the Node.js website¹⁵ for
detailed information.

Make sure you install Node 12.2.0 or higher.

If you’re on a Mac, your best bet is to install Node.js directly from
the Node.js website instead of through another package manager (like
Homebrew). Installing Node.js via Homebrew is known to cause some
issues.

The Node Package Manager (npm for short) is installed as a part of Node.js. To check
if npm is available as a part of our development environment, we can open a terminal
window and type:

$ npm -v

If a version number is not printed out and you receive an error, make sure to
download a Node.js installer that includes npm.

Your npm version should be 6.9.0 or higher.

TypeScript

Once you have Node.js setup, the next step is to install TypeScript. Make sure you
install at least version 3.7.4 or greater. To install it, run the following npm command:

1 $ npm install -g typescript

¹⁵https://nodejs.org/download/

https://nodejs.org/download/
https://nodejs.org/download/

Writing Your First Angular Web Application 5

Do I have to use TypeScript? No, you don’t have to use TypeScript to
use Angular, but you probably should. Angular does have an ES5 API,
but Angular is written in TypeScript and generally that’s what everyone
is using. We’re going to use TypeScript in this book because it’s great and
it makes working with Angular easier. That said, it isn’t strictly required.

Browser

We highly recommend using the Google ChromeWeb Browser¹⁶ to develop Angular
apps. We’ll use the Chrome developer toolkit throughout this book. To follow along
with our development and debugging we recommend downloading it now.

Special instruction for Windows users

Throughout this book, we will be using Unix/Mac commands in the terminal. Most
of these commands, like ls and cd, are cross-platform. However, sometimes these
commands are Unix/Mac-specific or contain Unix/Mac-specific flags (like ls -1p).

As a result, be alert that you may have to occasionally determine the equivalent of
a Unix/Mac command for your shell. Fortunately, the amount of work we do in the
terminal is minimal and you will not encounter this issue often.

Windows users should be aware that our terminal examples use Unix/Mac
commands.

Angular CLI

Angular provides a utility to allow users to create and manage projects from the
command line. It automates tasks like creating projects, adding new controllers, etc.
It’s generally a good idea to use Angular CLI as it will help create and maintain
common patterns across our application.

To install Angular CLI, run the following command:

¹⁶https://www.google.com/chrome/

https://www.google.com/chrome/
https://www.google.com/chrome/

Writing Your First Angular Web Application 6

1 $ npm install -g @angular/cli

Once it’s installed you’ll be able to run it from the command line using the ng

command. When you do, you’ll see a lot of output, which you can safely ignore.

If you’re curious about all of the things that Angular CLI can do, try out this
command:

1 $ ng help

Don’t worry about understanding all of the options - we’ll be covering the important
ones in this chapter.

Now that we have Angular CLI and its dependencies installed, let’s use this tool to
create our first application.

Example Project

Open up the terminal and run the ng new command to create a new project from
scratch:

1 $ ng new angular-hello-world

Once you run it, you maybe asked a few questions about your configuration
preferences.

For example, if asked if you want to add Angular routing, in this example
say No, but you’ll probably want to use it for a bigger project

When asked about what CSS framework you want to use, we’ll just use
CSS for now.

After you answer the questions, you’ll see (roughly) following output:

Writing Your First Angular Web Application 7

1 CREATE angular-hello-world/README.md (1034 bytes)

2 CREATE angular-hello-world/angular.json (3504 bytes)

3 CREATE angular-hello-world/package.json (1323 bytes)

4 CREATE angular-hello-world/tsconfig.json (384 bytes)

5 CREATE angular-hello-world/tslint.json (2805 bytes)

6 CREATE angular-hello-world/.editorconfig (245 bytes)

7 CREATE angular-hello-world/.gitignore (503 bytes)

8 CREATE angular-hello-world/src/environments/environment.prod.ts (51 bytes)

9 CREATE angular-hello-world/src/environments/environment.ts (631 bytes)

10 CREATE angular-hello-world/src/favicon.ico (5430 bytes)

11 CREATE angular-hello-world/src/index.html (304 bytes)

12 CREATE angular-hello-world/src/main.ts (370 bytes)

13 CREATE angular-hello-world/src/polyfills.ts (3194 bytes)

14 CREATE angular-hello-world/src/test.ts (642 bytes)

15 CREATE angular-hello-world/src/assets/.gitkeep (0 bytes)

16 CREATE angular-hello-world/src/styles.css (80 bytes)

17 CREATE angular-hello-world/src/browserslist (375 bytes)

18 CREATE angular-hello-world/src/karma.conf.js (964 bytes)

19 CREATE angular-hello-world/src/tsconfig.app.json (194 bytes)

20 CREATE angular-hello-world/src/tsconfig.spec.json (282 bytes)

21 CREATE angular-hello-world/src/tslint.json (314 bytes)

22 CREATE angular-hello-world/src/app/app.module.ts (314 bytes)

23 CREATE angular-hello-world/src/app/app.component.css (0 bytes)

24 CREATE angular-hello-world/src/app/app.component.html (1141 bytes)

25 CREATE angular-hello-world/src/app/app.component.spec.ts (986 bytes)

26 CREATE angular-hello-world/src/app/app.component.ts (207 bytes)

27 CREATE angular-hello-world/e2e/protractor.conf.js (752 bytes)

28 CREATE angular-hello-world/e2e/src/app.e2e-spec.ts (299 bytes)

29 CREATE angular-hello-world/e2e/src/app.po.ts (208 bytes)

30 CREATE angular-hello-world/e2e/tsconfig.e2e.json (213 bytes)

31 ...

32 added 1146 packages in 105.319s

33 Successfully initialized git.

This will run for a while while it’s installing npm dependencies. Once it finishes we’ll
see a success message.

The exact files that your project generates may vary slightly depending on
the version of @angular/cli that was installed.

There are a lot of files generated! Don’t worry about understanding all of them yet.

Writing Your First Angular Web Application 8

Throughout the book we’ll walk through what each one means and what it’s used
for.

If you’re running OSX or Linux, you might receive this line in the output:

1 Could not start watchman; falling back to NodeWatcher for file system events.

This means that we don’t have a tool called watchman installed. This
tool helps Angular CLI when it needs to monitor files in your filesystem
for changes. If you’re running OSX, it’s recommended to install it using
Homebrew with the following command:

1 $ brew install watchman

If you’re on OSX and got an error when running brew, it means that
you probably don’t have Homebrew installed. Please refer to the page
http://brew.sh/ to learn how to install it and try again.

If you’re on Linux, you may refer to the page https://ember-cli.com/user-
guide/#watchman for more information about how to install watchman.

If you’re on Windows instead, you don’t need to install anything and
Angular CLI will use the native Node.js watcher.

Let’s go inside the angular-hello-world directory, which the ng command created
for us and see what has been created:

Writing Your First Angular Web Application 9

1 $ cd angular-hello-world

2 $ ls

3 .

4 |-- README.md // a useful README

5 |-- angular.json // angular-cli configuration file

6 |-- e2e/ // end-to-end tests

7 |-- node_modules/ // installed dependencies

8 |-- package-lock.json // npm dependencies lockfile

9 |-- package.json // npm configuration

10 |-- src/ // our application's code

11 |-- tsconfig.json // typescript config

12 `-- tslint.json // linting config

13

14 3 directories, 6 files

Below we will show the use of the tree command. The tree command
is completely optional. But if you’re on OSX it can be installed via brew

install tree

For now, the folder we’re interested in is src, where we’ll put our custom application
code. Let’s take a look at what was created there:

1 $ cd src

2 $ tree -F

3 .

4 |-- app/

5 | |-- app.component.css

6 | |-- app.component.html

7 | |-- app.component.spec.ts

8 | |-- app.component.ts

9 | `-- app.module.ts

10 |-- assets/

11 |-- browserslist

12 |-- environments/

13 | |-- environment.prod.ts

14 | `-- environment.ts

15 |-- favicon.ico

16 |-- index.html

17 |-- karma.conf.js

18 |-- main.ts

19 |-- polyfills.ts

Writing Your First Angular Web Application 10

20 |-- styles.css

21 |-- test.ts

22 |-- tsconfig.app.json

23 |-- tsconfig.spec.json

24 `-- tslint.json

25

26 3 directories, 18 files

Using your favorite text editor, let’s open index.html. You should see this code:

code/first-app/angular-hello-world/src/index.html

1 <!doctype html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <title>AngularHelloWorld</title>

6 <base href="/">

7

8 <meta name="viewport" content="width=device-width, initial-scale=1">

9 <link rel="icon" type="image/x-icon" href="favicon.ico">

10 </head>

11 <body>

12 <app-root></app-root>

13 </body>

14 </html>

Let’s break it down a bit:

code/first-app/angular-hello-world/src/index.html

1 <!doctype html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <title>AngularHelloWorld</title>

6 <base href="/">

7

8 <meta name="viewport" content="width=device-width, initial-scale=1">

9 <link rel="icon" type="image/x-icon" href="favicon.ico">

10 </head>

Writing Your First Angular Web Application 11

If you’re familiar with writing HTML files, this first part is straightforward, we’re
declaring the core structure of the HTML document and a few bits of metadata such
as page charset, title and base href.

If we continue to the template body, we see the following:

code/first-app/angular-hello-world/src/index.html

10 </head>

11 <body>

12 <app-root></app-root>

13 </body>

14 </html>

The app-root tag is where our application will be rendered.

But what is the app-root tag and where does it come from? app-root is a component
that is defined by our Angular application. In Angular we can define our own
HTML tags and give them custom functionality. The app-root tag will be the “entry
point” for our application on the page.

Let’s try running this app as-is and then we’ll dig in to see how this component is
defined.

Running the application

Before making any changes, let’s load our app from the generated application into
the browser. Angular CLI has a built in HTTP server that we can use to run our app.

To use it, head back to the terminal, and change directories into the root of our
application.

Writing Your First Angular Web Application 12

1 $ cd angular-hello-world

2 $ ng serve

3 ** NG Live Development Server is running on http://localhost:4200. **

4 // ...

5 // a bunch of other messages

6 // ...

7 Compiled successfully.

Our application is now running on localhost port 4200. Let’s open the browser and
visit:

http://localhost:4200¹⁷

Note that if you get the message:

1 Port 4200 is already in use. Use '--port' to specify a different port

This means that you already have another service running on port 4200. If
this is the case you can either 1. shut down the other service or 2. use the
--port flag when running ng serve like this:

1 ng serve --port 9001

The above command would change the URL you open in your browser to
something like: http://localhost:9001

Another thing to notice is that, on some machines, the domain localhost

may not work. You may see a set of numbers such as 127.0.0.1. When you
run ng serve it should show you what URL the server is running on, so be
sure to read the messages on your machine to find your exact development
URL.

¹⁷http://localhost:4200

http://localhost:4200/
http://localhost:4200/

Writing Your First Angular Web Application 13

Running application

Now that we have the application setup, and we know how to run it, it’s time to start
writing some code.

Making a Component

One of the big ideas behind Angular is the idea of components.

In our Angular apps, we write HTML markup that becomes our interactive appli-
cation, but the browser only understands a limited set of markup tags; Built-ins
like <select> or <form> or <video> all have functionality defined by our browser
creator.

What if we want to teach the browser new tags? What if we wanted to have a
<weather> tag that shows the weather? Or what if we want to create a <login> tag
that shows a login panel?

Writing Your First Angular Web Application 14

This is the fundamental idea behind components: we will teach the browser new
tags that have custom functionality attached to them.

If you have a background in AngularJS 1.X, you can think of components
as the new version of directives.

Let’s create our very first component. When we have this component written, we
will be able to use it in our HTML document using the app-hello-world tag:

1 <app-hello-world></app-hello-world>

To create a new component using Angular CLI, we’ll use the generate command.

To generate the hello-world component, we need to run the following command:

1 $ ng generate component hello-world

2 CREATE src/app/hello-world/hello-world.component.css (0 bytes)

3 CREATE src/app/hello-world/hello-world.component.html (30 bytes)

4 CREATE src/app/hello-world/hello-world.component.spec.ts (657 bytes)

5 CREATE src/app/hello-world/hello-world.component.ts (288 bytes)

6 UPDATE src/app/app.module.ts (414 bytes)

So how do we actually define a new Component? A basic Component has two parts:

1. A Component decorator
2. A component definition class

Let’s look at the component code and then take these one at a time. Open up our first
TypeScript file: src/app/hello-world/hello-world.component.ts.

Writing Your First Angular Web Application 15

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-hello-world',

5 templateUrl: './hello-world.component.html',

6 styleUrls: ['./hello-world.component.css']

7 })

8 export class HelloWorldComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

This snippet may seem scary at first, but don’t worry. We’re going to walk through
it step by step.

Notice that we suffix our TypeScript file with .ts instead of .js The
problem is our browser doesn’t know how to interpret TypeScript files.
To solve this gap, the ng serve command live-compiles our .ts to a .js

file automatically.

Importing Dependencies

The import statement defines the modules we want to use to write our code. Here
we’re importing two things: Component, and OnInit.

We import Component from the module "@angular/core". The "@angular/core"

portion tells our programwhere to find the dependencies that we’re looking for. In
this case, we’re telling the compiler that "@angular/core" defines and exports two
JavaScript/TypeScript objects called Component and OnInit.

Similarly, we import OnInit from the same module. As we’ll learn later, OnInit helps
us to run code when we initialize the component. For now, don’t worry about it.

Writing Your First Angular Web Application 16

Notice that the structure of this import is of the format import { things } from

wherever. In the { things } part what we are doing is called destructuring. De-
structuring is a feature provided by ES6 and TypeScript. We will talk more about it
in the next chapter.

The idea with import is a lot like import in Java or require in Ruby: we’re pulling
in these dependencies from another module and making these dependencies
available for use in this file.

Component Decorators

After importing our dependencies, we are declaring the component:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

3 @Component({

4 selector: 'app-hello-world',

5 templateUrl: './hello-world.component.html',

6 styleUrls: ['./hello-world.component.css']

7 })

If you’re new to TypeScript then the syntax of this next statement might seem a little
foreign:

1 @Component({

2 // ...

3 })

What is going on here? These are called decorators.

We can think of decorators as metadata added to our code. When we use @Compo-
nent on the HelloWorld class, we are “decorating” HelloWorld as a Component.

We want to be able to use this component in our markup by using a <app-hello-

world> tag. To do that, we configure the @Component and specify the selector as
app-hello-world.

Writing Your First Angular Web Application 17

1 @Component({

2 selector: 'app-hello-world'

3 // ... more here

4 })

The syntax of Angular’s component selectors is similar to CSS selectors (though
Angular components have some special syntax for selectors, which we’ll cover later
on). For now, know that with this selector we’re defining a new tag that we can
use in our markup.

The selector property here indicates which DOM element this component is going
to use. In this case, any <app-hello-world></app-hello-world> tags that appear
within a template will be compiled using the HelloWorldComponent class and get
any attached functionality.

Adding a template with templateUrl

In our componentwe are specifying a templateUrl of ./hello-world.component.html.
Thismeans that wewill load our template from the file hello-world.component.html
in the same directory as our component. Let’s take a look at that file:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.html

1 <p>

2 hello-world works!

3 </p>

Here we’re defining a p tag with some basic text in the middle. When Angular loads
this component it will also read from this file and use it as the template for our
component.

Adding a template

We can define templates two ways, either by using the template key in our
@Component object or by specifying a templateUrl.

We could add a template to our @Component by passing the template option:

Writing Your First Angular Web Application 18

1 @Component({

2 selector: 'app-hello-world',

3 template: `

4 <p>

5 hello-world works inline!

6 </p>

7 `

8 })

Notice that we’re defining our template string between backticks (` … `). This is
a new (and fantastic) feature of ES6 that allows us to do multiline strings. Using
backticks for multiline strings makes it easy to put templates inside your code files.

Should you really be putting templates in your code files? The answer
is: it depends. For a long time the commonly held belief was that you should
keep your code and templates separate. While this might be easier for some
teams, for some projects it adds overhead because you have switch between
a lot of files.

Personally, if our templates are shorter than a page, we much prefer to
have the templates alongside the code (that is, within the .ts file). When
we see both the logic and the view together, it’s easy to understand how
they interact with one another.

The biggest drawback to mixing views and our code is that many editors
don’t support syntax highlighting of the internal strings (yet). Hopefully,
we’ll see more editors supporting syntax highlighting HTML within tem-
plate strings soon.

Adding CSS Styles with styleUrls

Notice the key styleUrls:

styleUrls: ['./hello-world.component.css']

This code says that we want to use the CSS in the file hello-world.component.css
as the styles for this component. Angular uses a concept called “style-encapsulation”

Writing Your First Angular Web Application 19

which means that styles specified for a particular component only apply to that
component. We talk more about this in-depth later on in the book in the Styling
section of Advanced Components.

For now, we’re not going to use any component-local styles, so you can leave this
as-is (or delete the key entirely).

You may have noticed that this key is different from template in that it
accepts an array as it’s argument. This is because we can load multiple
stylesheets for a single component.

Loading Our Component

Now that we have our first component code filled out, how do we load it in our page?

If we visit our application again in the browser, we’ll see that nothing changed. That’s
because we only created the component, but we’re not using it yet.

In order to change that, we need to add our component tag to a template that is al-
ready being rendered. Open up the file: first_app/angular-hello-world/src/app/app.component.html

Remember that because we configured our HelloWorldComponent with the selector
app-hello-world, we can use the <app-hello-world></app-hello-world> in our
template. Let’s add the <app-hello-world> tag to app.component.html

Delete the content in app.component.html and replace it with:

code/first-app/angular-hello-world/src/app/app.component.html

1 <h1>

2 {{title}}

3

4 <app-hello-world></app-hello-world>

5 </h1>

Now refresh the page and take a look:

Writing Your First Angular Web Application 20

Hello world works

It works!

Adding Data to the Component

Right now our component renders a static template, which means our component
isn’t very interesting.

Let’s imagine that we have an app which will show a list of users and we want
to show their names. Before we render the whole list, we first need to render an
individual user. So let’s create a new component that will show a user’s name.

To do this, we will use the ng generate command again:

Writing Your First Angular Web Application 21

1 ng generate component user-item

Remember that in order to see a component we’ve created, we need to add it to a
template.

Let’s add our app-user-item tag to app.component.html so that we can see our
changes as we make them. Modify app.component.html to look like this:

code/first-app/angular-hello-world/src/app/app.component.html
1 <h1>

2 {{title}}

3

4 <app-hello-world></app-hello-world>

5

6 <app-user-item></app-user-item>

7 </h1>

Then refresh the page and confirm that you see the user-item works! text on the
page.

We want our UserItemComponent to show the name of a particular user .

Let’s introduce name as a new property of our component. By having a name property,
wewill be able to reuse this component for different users (but keep the samemarkup,
logic, and styles).

In order to add a name, we’ll introduce a property on the UserItemComponent class
to declare it has a local variable named name.

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts
8 export class UserItemComponent implements OnInit {

9 name: string; // <-- added name property

10

11 constructor() {

12 this.name = 'Felipe'; // set the name

13 }

14

15 ngOnInit() {

16 }

17

18 }

Notice that we’ve changed two things :

Writing Your First Angular Web Application 22

1. name Property

On the UserItemComponent class we added a property. Notice that the syntax is
new relative to ES5 JavaScript. When we write name: string; it means that we’re
declaring the name property to be of type string.

Being able to assign a type to a variable is what gives TypeScript it’s name. By setting
the type of this property to string, the compiler ensures that name variable is a string
and it will throw an error if we try to assign, say, a number to this property.

This syntax is also the way TypeScript defines instance properties. By putting name:
string in our code like this, we’re giving every instance of UserItemComponent a
property name.

2. A Constructor

On the UserItemComponent class we defined a constructor, i.e. a function that is called
when we create new instances of this class.

In our constructor we can assign our name property by using this.name

When we write:

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

11 constructor() {

12 this.name = 'Felipe'; // set the name

13 }

We’re saying that whenever a new UserItemComponent is created, set the name to
'Felipe'.

Rendering The Template

When we have a property on a component, we can show that value in our template
by using two curly brackets {{ }} to display the value of the variable in our template.
For instance:

Writing Your First Angular Web Application 23

code/first-app/angular-hello-world/src/app/user-item/user-item.component.html

1 <p>

2 Hello {{ name }}

3 </p>

On the template notice that we added a new syntax: {{ name }}. The brackets are
called template tags (or sometimes mustache tags).

Whatever is between the template tags will be expanded as an expression. Here,
because the template is bound to our Component, the name will expand to the value
of this.name i.e. 'Felipe'.

Try It Out

After making these changes reload the page and the page should display Hello

Felipe

Writing Your First Angular Web Application 24

Application with Data

Working With Arrays

Now we are able to say “Hello” to a single name, but what if we want to say “Hello”
to a collection of names?

In Angular we can iterate over a list of objects in our template using the syntax
*ngFor. The idea is that we want to repeat the same markup for a collection of
objects.

If you’ve worked with AngularJS 1.X before, you’ve probably used the
ng-repeat directive. NgFor works much the same way.

Let’s create a new component that will render a list of users. We start by generating

Writing Your First Angular Web Application 25

a new component:

ng generate component user-list

And let’s replace our <app-user-item> tagwith <app-user-list> in our app.component.html
file:

code/first-app/angular-hello-world/src/app/app.component.html

1 <h1>

2 {{title}}

3

4 <app-hello-world></app-hello-world>

5

6 <app-user-list></app-user-list>

7 </h1>

In the same way we added a name property to our UserItemComponent, let’s add a
names property to this UserListComponent.

However, instead of storing only a single string, let’s set the type of this property to
an array of strings. An array is notated by the [] after the type, and the code looks
like this:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.ts

8 export class UserListComponent implements OnInit {

9 names: string[];

10

11 constructor() {

12 this.names = ['Ari', 'Carlos', 'Felipe', 'Nate'];

13 }

14

15 ngOnInit() {

16 }

17

18 }

The first change to point out is the new string[] property on our UserListComponent
class. This syntax means that names is typed as an Array of strings. Another way to
write this would be Array<string>.

Writing Your First Angular Web Application 26

We changed our constructor to set the value of this.names to ['Ari', 'Carlos',

'Felipe', 'Nate'].

Now we can update our template to render this list of names. To do this, we will use
*ngFor, which will

• iterate over a list of items and
• generate a new tag for each one.

Here’s what our new template will look like:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

1

2 <li *ngFor="let name of names">Hello {{ name }}

3

We updated the template with one ul and one li with a new *ngFor="let name of

names" attribute. The * character and let syntax can be a little overwhelming at first,
so let’s break it down:

The *ngFor syntax says we want to use the NgFor directive on this attribute. You can
think of NgFor akin to a for loop; the idea is that we’re creating a new DOM element
for every item in a collection.

The value states: "let name of names". names is our array of names as specified on
the UserListComponent object. let name is called a reference. When we say "let

name of names" we’re saying loop over each element in names and assign each one
to a local variable called name.

The NgFor directive will render one li tag for each entry found on the names array
and declare a local variable name to hold the current item being iterated. This new
variable will then be replaced inside the Hello {{ name }} snippet.

Writing Your First Angular Web Application 27

We didn’t have to call the reference variable name. We could just as well
have written:

1 <li *ngFor="let foobar of names">Hello {{ foobar }}

But what about the reverse? Quiz question: what would have happened if
we wrote:

1 <li *ngFor="let name of foobar">Hello {{ name }}

Answer: We’d get an error because foobar isn’t a property on the compo-
nent.

NgFor repeats the element that the ngFor is called. That is, we put it on the
li tag and not the ul tag because we want to repeat the list element (li)
and not the list itself (ul).

Note that the capitalization here isn’t a typo: NgFor is the capitalization
of the class that implements the logic and ngFor is the “selector” for the
attribute we want to use.

If you’re feeling adventurous you can learn a lot about how the Angular
core team writes Components by reading the source directly. For instance,
you can find the source of the NgFor directive here¹⁸.

When we reload the page now, we’ll see that we now have one li for each string in
the array:

¹⁸https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts

https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts
https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts

Writing Your First Angular Web Application 28

Application with Data

Using the User Item Component

Remember that earlier we created a UserItemComponent? Instead of rendering each
name within the UserListComponent, we ought to use UserItemComponent as a child
component - that is, instead of rendering the text Hello and the name directly, we
should let our UserItemComponent specify the template (and functionality) of each
item in the list.

To do this, we need to do three things:

1. Configure the UserListComponent to render to UserItemComponent (in the
template)

2. Configure the UserItemComponent to accept the name variable as an input and

Writing Your First Angular Web Application 29

3. Configure the UserListComponent template to pass the name to the UserItem-
Component.

Let’s perform these steps one-by-one.

Rendering the UserItemComponent

Our UserItemComponent specifies the selector app-user-item - let’s add that tag to
our template:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

1

2 <li *ngFor="let name of names">

3 <app-user-item></app-user-item>

4

5

Notice that we swapped out the text Hello and the name for the tag app-user-item.

If we reload our browser, this is what we will see:

Writing Your First Angular Web Application 30

Application with Data

It repeats, but something is wrong here - every name says “Felipe”! We need a way
to pass data into the child component.

Thankfully, Angular provides a way to do this: the @Input decorator.

Accepting Inputs

Remember that in our UserItemComponentwe had set this.name = 'Felipe'; in the
constructor of that component. Now we need to change this component to accept a
value for this property.

Here’s what we need to change on our UserItemComponent:

Writing Your First Angular Web Application 31

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

1 import {

2 Component,

3 OnInit,

4 Input // <--- added this

5 } from '@angular/core';

6

7 @Component({

8 selector: 'app-user-item',

9 templateUrl: './user-item.component.html',

10 styleUrls: ['./user-item.component.css']

11 })

12 export class UserItemComponent implements OnInit {

13 @Input() name: string; // <-- added Input annotation

14

15 constructor() {

16 // removed setting name

17 }

18

19 ngOnInit() {}

20 }

Notice that we changed the name property to have a decorator of @Input. We talk a
lot more about Inputs (and Outputs) in the next chapter, but for now, know that this
syntax allows us to pass in a value from the parent template .

In order to use Input we also had to add it to the list of constants in import.

Lastly, we don’t want to set a default value for name so we remove that from the
constructor.

So now that we have a name Input, how do we actually use it?

Passing an Input value

To pass values to a component we use the bracket [] syntax in our template - let’s
take a look at our updated template:

Writing Your First Angular Web Application 32

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

1

2 <li *ngFor="let name of names">

3 <app-user-item [name]="name"></app-user-item>

4

5

Notice that we’ve added a new attribute on our app-user-item tag: [name]="name"
. In Angular when we add an attribute in brackets like [foo] we’re saying we want
to pass a value to the input named foo on that component.

In this case notice that the name on the right-hand side comes from the let name ...

statement in ngFor. That is, consider if we had this instead:

<li *ngFor="let individualUserName of names">

<app-user-item [name]="individualUserName"></app-user-item>

The [name] part designates the Input on the UserItemComponent. Notice that we’re
not passing the literal string "individualUserName" instead we’re passing the value
of individualUserName, which is, on each pass, the value of an element of names.

We talk more about inputs and outputs in detail in the next chapter. For now, know
that we’re:

1. Iterating over names
2. Creating a new UserItemComponent for each element in names and
3. Passing the value of that name into the name Input property on the UserItem-

Component

Now our list of names works!

Writing Your First Angular Web Application 33

Application with Names Working

Congratulations! You’ve built your first Angular app with components!

Of course, this app is very simple and we’d like to build much more sophisticated
applications. Don’t worry, in this book we’ll show you how to become an expert
writing Angular apps. In fact, in this chapter we’re going to build a voting-app
(think Reddit or Product Hunt). This app will feature user interaction, and even more
components!

But before we start building a new app, let’s take a closer look at how Angular apps
are bootstrapped.

Bootstrapping Crash Course

Every app has a main entry point. This application was built using Angular CLI
(which is built on a tool called Webpack). We run this app by calling the command:

Writing Your First Angular Web Application 34

1 ng serve

ng will look at the file angular.json to find the entry point to our app. Let’s trace
how ng finds the components we just built.

At a high level, it looks like this:

• angular.json specifies a "main" file, which in this case is main.ts
• main.ts is the entry-point for our app and it bootstraps our application
• The bootstrap process boots an Angular module – we haven’t talked about
modules yet, but we will in a minute

• We use the AppModule to bootstrap the app. AppModule is specified in src/ap-

p/app.module.ts

• AppModule specifies which component to use as the top-level component. In this
case it is AppComponent

• AppComponent has <app-user-list> tags in the template and this renders our
list of users.

For now the thing we want to focus on is the Angular module system: NgModule.

Angular has a powerful concept of modules. When you boot an Angular app, you’re
not booting a component directly, but instead you create an NgModule which points
to the component you want to load.

Take a look at this code:

code/first-app/angular-hello-world/src/app/app.module.ts

9 @NgModule({

10 declarations: [

11 AppComponent,

12 HelloWorldComponent,

13 UserItemComponent,

14 UserListComponent

15],

16 imports: [

17 BrowserModule

18],

19 providers: [],

20 bootstrap: [AppComponent]

21 })

22 export class AppModule { }

Writing Your First Angular Web Application 35

The first thing we see is an @NgModule decorator. Like all decorators, this @NgModule(
...) code adds metadata to the class immediately following (in this case,
AppModule).

Our @NgModule decorator has four keys: declarations, imports, providers, and
bootstrap.

declarations

declarations specifies the components that are defined in this module. This is an
important idea in Angular:

You have to declare components in a NgModule before you can use them in your
templates.

You can think of an NgModule a bit like a “package” and declarations states what
components are “owned by” this module.

You may have noticed that when we used ng generate, the tool automatically added
our components to this declarations list! The idea is that when we generated a new
component, the ng tool assumed we wanted it to belong to the current NgModule.

imports

imports describes which dependencies this module has. We’re creating a browser
app, so we want to import the BrowserModule.

If your module depends on other modules, you list them here.

import vs. imports?

You might be asking the question, “What’s the difference between
importing a class at the top of the file and putting a module in imports?”

The short answer is that you put something in your NgModule’s imports if
you’re going to be using it in your templates or with dependency injection.
We haven’t talked about dependency injection, but rest assured, we will.

Writing Your First Angular Web Application 36

providers

providers is used for dependency injection. So to make a service available to be
injected throughout our application, we will add it here.

Learn more about this in the section on Dependency Injection.

bootstrap

bootstrap tells Angular that when this module is used to bootstrap an app, we need
to load the AppComponent component as the top-level component.

Expanding our Application

Now that we know how to create a basic application, let’s build our Reddit clone.
Before we start coding, it’s a good idea to look over our app and break it down into
its logical components.

Writing Your First Angular Web Application 37

Application with Data

We’re going to make two components in this app:

1. The overall application, which contains the form used to submit new articles
(marked in magenta in the picture).

2. Each article (marked in mint green).

Writing Your First Angular Web Application 38

In a larger application, the form for submitting articles would probably
become its own component. However, having the form be its own compo-
nent makes the data passing more complex, so we’re going to simplify in
this chapter and have only two components.

For now two components will work fine, but we’ll learn how to deal with
more sophisticated data architectures in later chapters of this book.

But first thing’s first, let’s generate a new application by running the same ng new
command we ran before to create a new application passing it the name of the app
we want to create (here, we’ll create an application called angular-reddit):

1 ng new angular-reddit

We’ve provided a completed version of our angular-reddit in the example
code download. If you ever need more context, be sure to check it out to
see how everything fits together.

Adding CSS

First thing we want to do is add some CSS styling so that our app isn’t completely
unstyled.

Writing Your First Angular Web Application 39

If you’re building your app from scratch, you’ll want to copy over a few
files from our completed example in the first_app/angular-reddit folder.

Copy:

• src/index.html
• src/styles.css
• src/app/vendor
• src/assets/images

into your application’s folder.

For this project we’re going to be using Semantic-UI¹⁹ to help with the
styling. Semantic-UI is a CSS framework, similar to Zurb Foundation²⁰ or
Twitter Bootstrap²¹. We’ve included it in the sample code download so all
you need to do is copy over the files specified above.

The Application Component

Let’s now build a new component which will:

1. store our current list of articles
2. contain the form for submitting new articles.

We can find the main application component on the src/app/app.component.ts file.
Let’s open this file. Again, we’ll see the same initial contents we saw previously.

¹⁹http://semantic-ui.com/
²⁰http://foundation.zurb.com
²¹http://getbootstrap.com

http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/
http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/

Writing Your First Angular Web Application 40

code/first-app/angular-reddit/src/app/app.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-root',

5 templateUrl: './app.component.html',

6 styleUrls: ['./app.component.css']

7 })

8 export class AppComponent {

9 title = 'angular-reddit';

10 }

Notice that the title property was automatically generated for us on the
AppComponent. Remove that line, because we aren’t using the component
title.

Below we’re going to be submitting new links that have a ‘title’, which
could be confused with the AppComponent title that was auto-generated by
Angular CLI. Keep in mind that the form ‘title’ is a separate form field from
the ‘title’ in the links below.

Let’s change the template a bit to include a form for adding links. We’ll use a bit of
styling from the semantic-ui package to make the form look a bit nicer:

code/first-app/angular-reddit/src/app/app.component.html

1 <form class="ui large form segment">

2 <h3 class="ui header">Add a Link</h3>

3

4 <div class="field">

5 <label for="title">Title:</label>

6 <input name="title" id="title">

7 </div>

8 <div class="field">

9 <label for="link">Link:</label>

10 <input name="link" id="link">

11 </div>

12 </form>

We’re creating a template that defines two input tags: one for the title of the article
and the other for the link URL.

Writing Your First Angular Web Application 41

When we load the browser you should see the rendered form:

Form

Adding Interaction

Now we have the form with input tags but we don’t have any way to submit the
data. Let’s add some interaction by adding a submit button to our form.

When the form is submitted, we’ll want to call a function to create and add a link.
We can do this by adding an interaction event on the <button /> element.

We tell Angular we want to respond to an event by surrounding the event name in
parentheses (). For instance, to add a function call to the <button /> onClick event,
we can pass it through like so:

Writing Your First Angular Web Application 42

1 <button (click)="addArticle(newtitle, newlink)"

2 class="ui positive right floated button">

3 Submit link

4 </button>

Now, when the button is clicked, it will call a function called addArticle(), which
we need to define on the AppComponent class. Let’s do that now:

code/first-app/angular-reddit/src/app/app.component.ts

8 export class AppComponent {

9 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

10 console.log(`Adding article title: ${title.value} and link: ${link.value}`);

11 return false;

12 }

13 }

With the addArticle() function added to the AppComponent and the (click) event
added to the <button /> element, this function will be called when the button is
clicked. Notice that the addArticle() function can accept two arguments: the title
and the link arguments. We need to change our template button to pass those into
the call to the addArticle().

We do this by populating a template variable by adding a special syntax to the input
elements on our form. Here’s what our template will look like:

code/first-app/angular-reddit/src/app/app.component.html

1 <form class="ui large form segment">

2 <h3 class="ui header">Add a Link</h3>

3

4 <div class="field">

5 <label for="title">Title:</label>

6 <input name="title" id="title" #newtitle> <!-- changed -->

7 </div>

8 <div class="field">

9 <label for="link">Link:</label>

10 <input name="link" id="link" #newlink> <!-- changed -->

11 </div>

12

13 <!-- added this button -->

14 <button (click)="addArticle(newtitle, newlink)"

Writing Your First Angular Web Application 43

15 class="ui positive right floated button">

16 Submit link

17 </button>

18

19 </form>

Notice that in the input tags we used the # (hash) to tell Angular to assign those tags
to a local variable. By adding the #newtitle and #newlink to the appropriate <input
/> elements, we can pass them as variables into the addArticle() function on the
button!

To recap what we’ve done, we’ve made four changes:

1. Created a button tag in our markup that shows the user where to click
2. We created a function named addArticle that defines what wewant to dowhen

the button is clicked
3. We added a (click) attribute on the button that says “call the function

addArticle when this button is pressed”.
4. We added the attribute #newtitle and #newlink to the <input> tags

Let’s cover each one of these steps in reverse order:

Binding inputs to values

Notice in our first input tag we have the following:

1 <input name="title" #newtitle>

This markup tells Angular to bind this <input> to the variable newtitle. The
#newtitle syntax is called a resolve. The effect is that this makes the variable
newtitle available to the expressions within this view.

newtitle is now an object that represents this input DOM element (specifically, the
type is HTMLInputElement). Because newtitle is an object, that means we get the
value of the input tag using newtitle.value.

Similarly we add #newlink to the other <input> tag, so that we’ll be able to extract
the value from it as well.

Writing Your First Angular Web Application 44

Binding actions to events

On our button tag we add the attribute (click) to define what should happen when
the button is clicked on. When the (click) event happens we call addArticle with
two arguments: newtitle and newlink. Where did this function and two arguments
come from?

1. addArticle is a function on our component definition class AppComponent
2. newtitle comes from the resolve (#newtitle) on our <input> tag named title

3. newlink comes from the resolve (#newlink) on our <input> tag named link

All together:

1 <button (click)="addArticle(newtitle, newlink)"

2 class="ui positive right floated button">

3 Submit link

4 </button>

Themarkup class="ui positive right floated button" comes from Se-
mantic UI and it gives the button the pleasant green color.

Defining the Action Logic

On our class AppComponent we define a new function called addArticle. It takes
two arguments: title and link. Again, it’s important to realize that title and link

are both objects of type HTMLInputElement and not the input values directly. To get
the value from the input we have to call title.value. For now, we’re just going to
console.log out those arguments.

Writing Your First Angular Web Application 45

code/first-app/angular-reddit/src/app/app.component.ts

9 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

10 console.log(`Adding article title: ${title.value} and link: ${link.value}`);

11 return false;

12 }

Notice that we’re using backtick strings again. This is a really handy feature
of ES6: backtick strings will expand template variables!

Here we’re putting ${title.value} in the string and this will be replaced
with the value of title.value in the string.

Try it out!

Now when you click the submit button, you can see that the message is printed on
the console:

Writing Your First Angular Web Application 46

Clicking the Button

Adding the Article Component

Now we have a form to submit new articles, but we aren’t showing the new articles
anywhere. Because every article submitted is going to be displayed as a list on the
page, this is the perfect candidate for a new component.

Let’s create a new component to represent the individual submitted articles.

Writing Your First Angular Web Application 47

A reddit-article

For that, let’s use the ng tool to generate a new component:

ng generate component article

We have three parts to defining this new component:

1. Define the ArticleComponent view in the template
2. Define the ArticleComponent properties by annotating the class with @Compo-

nent

3. Define a component-definition class (ArticleComponent) which houses our
component logic

Let’s talk through each part in detail:

Creating the ArticleComponent template

We define the template using the file article.component.html:

code/first-app/angular-reddit/src/app/article/article.component.html

1 <div class="four wide column center aligned votes">

2 <div class="ui statistic">

3 <div class="value">

4 {{ votes }}

5 </div>

6 <div class="label">

7 Points

8 </div>

9 </div>

10 </div>

11 <div class="twelve wide column">

12

Writing Your First Angular Web Application 48

13 {{ title }}

14

15 <ul class="ui big horizontal list voters">

16 <li class="item">

17 <a href (click)="voteUp()">

18 <i class="arrow up icon"></i>

19 upvote

20

21

22 <li class="item">

23 <a href (click)="voteDown()">

24 <i class="arrow down icon"></i>

25 downvote

26

27

28

29 </div>

There’s a lot of markup here, so let’s break it down :

A Single reddit-article Row

We have two columns:

1. the number of votes on the left and
2. the article information on the right.

We specify these columns with the CSS classes four wide column and twelve wide

column respectively (remember that these come from SemanticUI’s CSS).

We’re showing votes and the title with the template expansion strings {{ votes

}} and {{ title }}. The values come from the value of votes and title property
of the ArticleComponent class, which we’ll define in a minute.

Writing Your First Angular Web Application 49

Notice that we can use template strings in attribute values, as in the href of the
a tag: href="{{ link }}". In this case, the value of the href will be dynamically
populated with the value of link from the component class

On our upvote/downvote links we have an action. We use (click) to bind vo-

teUp()/voteDown() to their respective buttons. When the upvote button is pressed,
the voteUp() function will be called on the ArticleComponent class (similarly with
downvote and voteDown()).

Creating the ArticleComponent

code/first-app/angular-reddit/src/app/article/article.component.ts

7 @Component({

8 selector: 'app-article',

9 templateUrl: './article.component.html',

10 styleUrls: ['./article.component.css'],

11 })

First, we define a new Component with @Component. The selector says that this
component is placed on the page by using the tag <app-article> (i.e. the selector is
a tag name).

So the most essential way to use this component would be to place the following tag
in our markup:

<app-article>

</app-article>

These tags will remain in our view when the page is rendered.

Creating the ArticleComponent Definition Class

Finally, we create the ArticleComponent definition class:

Writing Your First Angular Web Application 50

code/first-app/angular-reddit/src/app/article/article.component.ts

12 export class ArticleComponent implements OnInit {

13 @HostBinding('attr.class') cssClass = 'row';

14 votes: number;

15 title: string;

16 link: string;

17

18 constructor() {

19 this.title = 'Angular';

20 this.link = 'http://angular.io';

21 this.votes = 10;

22 }

23

24 voteUp() {

25 this.votes += 1;

26 }

27

28 voteDown() {

29 this.votes -= 1;

30 }

31

32 ngOnInit() {

33 }

34

35 }

Here we create four properties on ArticleComponent:

1. cssClass - the CSS class we want to apply to the “host” of this component
2. votes - a number representing the sum of all upvotes, minus the downvotes
3. title - a string holding the title of the article
4. link - a string holding the URL of the article

We want each app-article to be on its own row. We’re using Semantic UI, and
Semantic provides a CSS class for rows²² called row.

In Angular, a component host is the element this component is attached to. We
can set properties on the host element by using the @HostBinding() decorator. In this

²²http://semantic-ui.com/collections/grid.html

http://semantic-ui.com/collections/grid.html
http://semantic-ui.com/collections/grid.html

Writing Your First Angular Web Application 51

case, we’re asking Angular to keep the value of the host elements class to be in sync
with the property cssClass.

We import HostBinding from the package @angular/core. For instance we
can add HostBinding like this:

1 import { Component, HostBinding } from '@angular/core';

By using @HostBinding() the host element (the app-article tag) we want to set the
class attribute to have “row”.

Using the @HostBinding() is nice because it means we can encapsulate the
app-articlemarkup within our component. That is, we don’t have to both
use an app-article tag and require a class="row" in the markup of the
parent view. By using the @HostBinding decorator, we’re able to configure
our host element from within the component.

In the constructor() we set some default attributes:

code/first-app/angular-reddit/src/app/article/article.component.ts

18 constructor() {

19 this.title = 'Angular';

20 this.link = 'http://angular.io';

21 this.votes = 10;

22 }

And we define two functions for voting, one for voting up voteUp and one for voting
down voteDown:

Writing Your First Angular Web Application 52

code/first-app/angular-reddit/src/app/article/article.component.ts

24 voteUp() {

25 this.votes += 1;

26 }

27

28 voteDown() {

29 this.votes -= 1;

30 }

In voteUp we increment this.votes by one. Similarly we decrement for voteDown.

Using the app-article Component

In order to use this component and make the data visible, we have to add a <app-

article></app-article> tag somewhere in our markup.

In this case, we want the AppComponent to render this new component, so let’s
update the code in that component. Add the <app-article> tag to the AppComponent’s
template right after the closing </form> tag:

1 <button (click)="addArticle(newtitle, newlink)"

2 class="ui positive right floated button">

3 Submit link

4 </button>

5 </form>

6

7 <div class="ui grid posts">

8 <app-article>

9 </app-article>

10 </div>

If we generated the ArticleComponent using Angular CLI (via ng generate compo-

nent), by default it should have “told” Angular about our app-article tag (more on
that below). However, if we created this component “by hand” and we reload the
browser now, we might see that the <app-article> tag wasn’t compiled. Oh no!

Whenever hitting a problem like this, the first thing to do is open up your browser’s
developer console. If we inspect our markup (see screenshot below), we can see that
the app-article tag is on our page, but it hasn’t been compiled into markup. Why
not?

Writing Your First Angular Web Application 53

Unexpanded tag when inspecting the DOM

This happens because the AppComponent component doesn’t know about the Arti-

cleComponent component yet.

Angular 1 Note: If you’ve used Angular 1 it might be surprising that our
app doesn’t know about our new app-article component. This is because
in Angular 1, directives match globally. However, in Angular you need to
explicitly specify which components (and therefore, which selectors) you
want to use.

On the one hand, this requires a little more configuration. On the other
hand, it’s great for building scalable apps because it means we don’t have
to share our directive selectors in a global namespace.

In order to tell our AppComponent about our new ArticleComponent component, we
need to add the ArticleComponent to the list of declarations in this NgModule.

Writing Your First Angular Web Application 54

We add ArticleComponent to our declarations because ArticleComponent
is part of this module (AppModule). However, if ArticleComponentwere part
of a different module, then we might import it with imports.

We’ll discuss more about NgModules later on, but for now, know that
when you create a new component, you have to put in a declarations

in NgModules.

code/first-app/angular-reddit/src/app/app.module.ts

5 import { AppComponent } from "./app.component";

6 import { ArticleComponent } from "./article/article.component";

7

8 @NgModule({

9 declarations: [

10 AppComponent,

11 ArticleComponent // <-- added this

12],

See here that we are:

1. importing ArticleComponent and then
2. Adding ArticleComponent to the list of declarations

After you’ve added ArticleComponent to declarations in the NgModule, if we reload
the browser we should see the article properly rendered:

Writing Your First Angular Web Application 55

Rendered ArticleComponent component

However, clicking on the vote up or vote down links will cause the page to reload
instead of updating the article list.

JavaScript, by default, propagates the click event to all the parent components.
Because the click event is propagated to parents, our browser is trying to follow the
empty link, which tells the browser to reload.

To fix that, we need to make the click event handler to return false. This will ensure
the browser won’t try to refresh the page. Let’s update our code so that each of the
functions voteUp() and voteDown() return a boolean value of false (tells the browser
not to propagate the event upwards):

Writing Your First Angular Web Application 56

1 voteDown(): boolean {

2 this.votes -= 1;

3 return false;

4 }

5 // and similarly with `voteUp()`

Now when we click the links we’ll see that the votes increase and decrease properly
without a page refresh.

Rendering Multiple Rows

Right now we only have one article on the page and there’s no way to render more,
unless we paste another <app-article> tag. And even if we did that all the articles
would have the same content, so it wouldn’t be very interesting.

Creating an Article class

A good practice when writing Angular code is to try to isolate the data structures
we are using from the component code. To do this, let’s create a data structure that
represents a single article. Let’s add a new file article.model.ts to define an Article
class that we can use.

code/first-app/angular-reddit/src/app/article/article.model.ts

1 export class Article {

2 title: string;

3 link: string;

4 votes: number;

5

6 constructor(title: string, link: string, votes?: number) {

7 this.title = title;

8 this.link = link;

9 this.votes = votes || 0;

10 }

11 }

Here we are creating a new class that represents an Article. Note that this is a plain
class and not an Angular component. In the Model-View-Controller pattern this
would be theModel.

Writing Your First Angular Web Application 57

Each article has a title, a link, and a total for the votes. When creating a new
article we need the title and the link. The votes parameter is optional (denoted by
the ? at the end of the name) and defaults to zero.

Now let’s update the ArticleComponent code to use our new Article class. Instead
of storing the properties directly on the ArticleComponent component let’s store the
properties on an instance of the Article class.

First let’s import the class:

code/first-app/angular-reddit/src/app/article/article.component.ts

6 import { Article } from './article.model';

Then let’s use it:

code/first-app/angular-reddit/src/app/article/article.component.ts

13 export class ArticleComponent implements OnInit {

14 @HostBinding('attr.class') cssClass = 'row';

15 article: Article;

16

17 constructor() {

18 this.article = new Article(

19 'Angular',

20 'http://angular.io',

21 10);

22 }

23

24 ngOnInit() {

25 }

26

27 }

Notice what we’ve changed: instead of storing the title, link, and votes properties
directly on the component, we’re storing a reference to an article. What’s neat is
that we’ve defined the type of article to be our new Article class.

When it comes to voteUp (and voteDown), we don’t increment votes on the compo-
nent, but rather, we need to increment the votes on the article.

However, this refactoring introduces another change: we need to update our view to
get the template variables from the right location. To do that, we need to change our

Writing Your First Angular Web Application 58

template tags to read from article. That is, where before we had {{ votes }}, we
need to change it to {{ article.votes }}, and same with title and link:

code/first-app/angular-reddit/src/app/article/article.component.html

1 <div class="four wide column center aligned votes">

2 <div class="ui statistic">

3 <div class="value">

4 {{ article.votes }}

5 </div>

6 <div class="label">

7 Points

8 </div>

9 </div>

10 </div>

11 <div class="twelve wide column">

12

13 {{ article.title }}

14

15 <ul class="ui big horizontal list voters">

16 <li class="item">

17 <a href (click)="voteUp()">

18 <i class="arrow up icon"></i>

19 upvote

20

21

22 <li class="item">

23 <a href (click)="voteDown()">

24 <i class="arrow down icon"></i>

25 downvote

26

27

28

29 </div>

Reload the browser and everything still works.

This situation is better but something in our code is still off: our voteUp and voteDown
methods break the encapsulation of the Article class by changing the article’s
internal properties directly.

Writing Your First Angular Web Application 59

voteUp and voteDown currently break the Law of Demeter²³ which says
that a given object should assume as little as possible about the structure
or properties of other objects.

The problem is that our ArticleComponent component knows too much about the
Article class internals. To fix that, let’s add voteUp and voteDown methods on the
Article class (we’ll also add a domain function, which we’ll talk about in a moment):

code/first-app/angular-reddit/src/app/article/article.model.ts

1 export class Article {

2 title: string;

3 link: string;

4 votes: number;

5

6 constructor(title: string, link: string, votes?: number) {

7 this.title = title;

8 this.link = link;

9 this.votes = votes || 0;

10 }

11

12 voteUp(): void {

13 this.votes += 1;

14 }

15

16 voteDown(): void {

17 this.votes -= 1;

18 }

19

20 // domain() is a utility function that extracts

21 // the domain from a URL, which we'll explain shortly

22 domain(): string {

23 try {

24 // e.g. http://foo.com/path/to/bar

25 const domainAndPath: string = this.link.split('//')[1];

26 // e.g. foo.com/path/to/bar

27 return domainAndPath.split('/')[0];

28 } catch (err) {

29 return null;

30 }

31 }

32 }

²³http://en.wikipedia.org/wiki/Law_of_Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

Writing Your First Angular Web Application 60

We can then change ArticleComponent to call these methods:

code/first-app/angular-reddit/src/app/article/article.component.ts

13 export class ArticleComponent implements OnInit {

14 @HostBinding('attr.class') cssClass = 'row';

15 article: Article;

16

17 constructor() {

18 this.article = new Article(

19 'Angular',

20 'http://angular.io',

21 10);

22 }

23

24 voteUp(): boolean {

25 this.article.voteUp();

26 return false;

27 }

28

29 voteDown(): boolean {

30 this.article.voteDown();

31 return false;

32 }

33

34 ngOnInit() {

35 }

36

37 }

Writing Your First Angular Web Application 61

Why do we have a voteUp function in both the model and the compo-
nent?

The reason we have a voteUp() and a voteDown() on both classes is because
each function does a slightly different thing. The idea is that the voteUp()
on the ArticleComponent relates to the component view, whereas the
Article model voteUp() defines what mutations happen in the model.

That is, it allows the Article class to encapsulate what functionality should
happen to a model when voting happens. In a “real” app, the internals of
the Articlemodel would probably be more complicated, e.g. make an API
request to a webserver, and you wouldn’t want to have that sort of model-
specific code in your component controller.

Similarly, in the ArticleComponent we return false; as a way to say
“don’t propagate the event” - this is a view-specific piece of logic and we
shouldn’t allow the Articlemodel’s voteUp() function to have knowledge
about that sort of view-specific API. That is, the Article model should
allow voting apart from the specific view.

After reloading our browser, we’ll notice everything works the same way, but we
now have clearer, simpler code.

Checkout our ArticleComponent component definition now: it’s so short!
We’ve moved a lot of logic out of our component and into our models.
The corresponding MVC guideline here might be Fat Models, Skinny
Controllers²⁴. The idea is that we want to move most of our logic to our
models so that our components do the minimum work possible.

Storing Multiple Articles

Let’s write the code that allows us to have a list of multiple Articles.

Let’s start by changing AppComponent to have a collection of articles:

²⁴http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

Writing Your First Angular Web Application 62

code/first-app/angular-reddit/src/app/app.component.ts

1 import { Component } from '@angular/core';

2 import { Article } from './article/article.model'; // <-- import this

3

4 @Component({

5 selector: 'app-root',

6 templateUrl: './app.component.html',

7 styleUrls: ['./app.component.css']

8 })

9 export class AppComponent {

10 articles: Article[]; // <-- component property

11

12 constructor() {

13 this.articles = [

14 new Article('Angular', 'http://angular.io', 3),

15 new Article('Fullstack', 'http://fullstack.io', 2),

16 new Article('Angular Homepage', 'http://angular.io', 1),

17];

18 }

Note that the above code block is not the complete AppComponent class. We
also have the addArticle function.

Notice that our AppComponent has the line:

1 articles: Article[];

The Article[] might look a little unfamiliar. We’re saying here that articles is an
Array of Articles. Another way this could be written is Array<Article>. The word
for this pattern is generics. It’s a concept seen in Java, C#, and other languages. The
idea is that our collection (the Array) is typed. That is, the Array is a collection that
will only hold objects of type Article.

In order to have access to the Article class, we first have to import it, as we do up
top.

We populate this Array by setting this.articles in the constructor:

Writing Your First Angular Web Application 63

code/first-app/angular-reddit/src/app/app.component.ts

12 constructor() {

13 this.articles = [

14 new Article('Angular', 'http://angular.io', 3),

15 new Article('Fullstack', 'http://fullstack.io', 2),

16 new Article('Angular Homepage', 'http://angular.io', 1),

17];

18 }

Configuring the ArticleComponent with inputs

Now that we have a list of Article models, how can we pass them to our Article-
Component component?

Here again we use Inputs. Previously we had our ArticleComponent class defined
like this:

code/first-app/angular-reddit/src/app/article/article.component.ts

13 export class ArticleComponent implements OnInit {

14 @HostBinding('attr.class') cssClass = 'row';

15 article: Article;

16

17 constructor() {

18 this.article = new Article(

19 'Angular',

20 'http://angular.io',

21 10);

22 }

The problem here is that we’ve hard coded a particular Article in the constructor.
The point of making components is not only encapsulation, but also reusability.

What we would really like to do is to configure the Article we want to display. If,
for instance, we had two articles, article1 and article2, we would like to be able
to reuse the app-article component by passing an Article as a “parameter” to the
component like this:

Writing Your First Angular Web Application 64

1 <app-article [article]="article1"></app-article>

2 <app-article [article]="article2"></app-article>

Angular allows us to do this by using the Input decorator on a property of a
Component:

1 class ArticleComponent {

2 @Input() article: Article;

3 // ...

Now if we have an Article in a variable myArticle we could pass it to our
ArticleComponent in our view. Remember, we can pass a variable in an element
by surrounding it in square brackets [variableName], like so:

1 <app-article [article]="myArticle"></app-article>

Notice the syntax here: we put the name of the input in brackets as in: [article]
and the value of the attribute is what we want to pass into that input.

Then, and this is important, the this.article on the ArticleComponent instance will
be set to myArticle. We can think about the variable myArticle as being passed as a
parameter (i.e. input) to our components.

Here’s what our ArticleComponent component now looks like using @Input:

code/first-app/angular-reddit/src/app/article/article.component.ts

1 import {

2 Component,

3 OnInit,

4 Input, // <-- added,

5 HostBinding

6 } from '@angular/core';

7 import { Article } from './article.model'; // <-- added

8

9 @Component({

10 selector: 'app-article',

11 templateUrl: './article.component.html',

12 styleUrls: ['./article.component.css']

13 })

14 export class ArticleComponent implements OnInit {

Writing Your First Angular Web Application 65

15 @HostBinding('attr.class') cssClass = 'row';

16 @Input() article: Article;

17

18 constructor() {

19 // article is populated by the Input now,

20 // so we don't need anything here

21 }

22

23 voteUp(): boolean {

24 this.article.voteUp();

25 return false;

26 }

27

28 voteDown(): boolean {

29 this.article.voteDown();

30 return false;

31 }

32

33 ngOnInit() {

34 }

35

36 }

Don’t forget to import!

Notice that we import the Input class from @angular/core. We’ve also
imported our Article model as we did with the AppComponent earlier.

Rendering a List of Articles

Earlier we configured our AppComponent to store an array of articles. Now let’s
configure AppComponent to render all the articles. To do so, instead of having the
<app-article> tag alone, we are going to use the NgFor directive to iterate over the
list of articles and render a app-article for each one:

Let’s add this in the template of the AppComponent @Component, just below the closing
<form> tag:

Writing Your First Angular Web Application 66

Submit link

</button>

</form>

<!-- start adding here -->

<div class="ui grid posts">

<app-article

*ngFor="let article of articles"

[article]="article">

</app-article>

</div>

<!-- end adding here -->

Remember when we rendered a list of names as a bullet list using the NgFor directive
earlier in the chapter? This syntax also works for rendering multiple components.

The *ngFor="let article of articles" syntax will iterate through the list of
articles and create the local variable article (for each item in the list).

To specify the article input on a component, we are using the [inputName]="inputValue"
expression. In this case, we’re saying that we want to set the article input to the
value of the local variable article set by ngFor.

We are using the variable article many times in that previous code
snippet, it’s (potentially) clearer if we rename the temporary variable
created by NgFor to foobar:

1 <app-article

2 *ngFor="let foobar of articles"

3 [article]="foobar">

4 </app-article>

So here we have three variables:

1. articleswhich is an Array of Articles, defined on the AppComponent
2. foobar which is a single element of articles (an Article), defined

by NgFor
3. article which is the name of the field defined on inputs of the

ArticleComponent

Basically, NgFor generates a temporary variable foobar and then we’re
passing it in to app-article

Writing Your First Angular Web Application 67

Reloading our browser now, we will see all articles will be rendered:

Multiple articles being rendered

Adding New Articles

Now we need to change addArticle to actually add new articles when the button is
pressed. Change the addArticle method to match the following:

Writing Your First Angular Web Application 68

code/first-app/angular-reddit/src/app/app.component.ts

20 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

21 console.log(`Adding article title: ${title.value} and link: ${link.value}`);

22 this.articles.push(new Article(title.value, link.value, 0));

23 title.value = '';

24 link.value = '';

25 return false;

26 }

This will:

1. create a new Article instance with the submitted title and URL
2. add it to the array of Articles and
3. clear the input field values

How are we clearing the input field values? Well, if you recall, title and
link are HTMLInputElement objects. That means we can set their properties.
When we change the value property, the input tag on our page changes.

After adding a new article in our input fields and clicking the Submit Link we will
see the new article added!

Finishing Touches

Displaying the Article Domain

As a nice touch, let’s add a hint next to the link that shows the domain where the
user will be redirected to when the link is clicked.

Let’s add a domain method to the Article class:

Writing Your First Angular Web Application 69

code/first-app/angular-reddit/src/app/article/article.model.ts

22 domain(): string {

23 try {

24 // e.g. http://foo.com/path/to/bar

25 const domainAndPath: string = this.link.split('//')[1];

26 // e.g. foo.com/path/to/bar

27 return domainAndPath.split('/')[0];

28 } catch (err) {

29 return null;

30 }

31 }

Let’s add a call to this function on the ArticleComponent’s template:

1 <div class="twelve wide column">

2

3 {{ article.title }}

4

5 <!-- right here -->

6 <div class="meta">({{ article.domain() }})</div>

7 <ul class="ui big horizontal list voters">

8 <li class="item">

9 <a href (click)="voteUp()">

And now when we reload the browser, we will see the domain name of each URL
(note: URL must include http://).

Re-sorting Based on Score

Clicking and voting on articles, we’ll see that something doesn’t feel quite right: our
articles don’t sort based on the score! We definitely want to see the highest-rated
items on top and the lower ranking ones sink to the bottom.

We’re storing the articles in an Array in our AppComponent class, but that Array is
unsorted. An easy way to handle this is to create a new method sortedArticles on
AppComponent:

Writing Your First Angular Web Application 70

code/first-app/angular-reddit/src/app/app.component.ts

28 sortedArticles(): Article[] {

29 return this.articles.sort((a: Article, b: Article) => b.votes - a.votes);

30 }

ES6 Arrow Function

The above code snippet uses “arrow” (=>) functions from ES6. You can read
more about arrow functions here²⁵

sort() We’re also calling the sort() function, which is a built-in which
you can read about here²⁶

In our ngFor we can iterate over sortedArticles() (instead of articles directly):

1 <div class="ui grid posts">

2 <app-article

3 *ngFor="let article of sortedArticles()"

4 [article]="article">

5 </app-article>

6 </div>

Deployment

Now that we have an app that runs, let’s get it live on the internet, so that we can
share it with our friends!

Deployment and performance in production-ready apps is an intermediate
topic that we’ll cover in a future chapter. For now, we’re going to gloss over
the details and just show how easy a basic deployment can be.

Deploying our app is the act of pushing our code to a server, where it can be accessed
by others.

Broadly speaking, the idea is that we’re going to:

²⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
²⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Writing Your First Angular Web Application 71

• compile all of our TypeScript code into JavaScript (which the browser can read)
• bundle all of our JavaScript code files into one or two files
• and then upload our JavaScript, HTML, CSS, and images to a server

Ultimately, this Angular app is an HTML file that loads JavaScript code. So we need
to upload our code to a computer somewhere on the internet.

But first, let’s build our Angular app.

Building Our App for Production

The Angular CLI tool we used to generate this app can be used to build our app for
production. In fact, we just type a single command.

In first_app/angular-reddit, type the following:

ng build --prod

This command tells the ng tool to build our application for a production environ-
ment.

This command will run for a little while and when it finishes you should have a dist
folder on your disk.

1 $ ls dist/angular-reddit

2 136B assets/

3 5.3K favicon.ico

4 27K flags.9c74e172f87984c48ddf.png

5 306K icons.2980083682e94d33a66e.svg

6 119K icons.706450d7bba6374ca02f.ttf

7 55K icons.97493d3f11c0a3bd5cbd.woff2

8 70K icons.d9ee23d59d0e0e727b51.woff

9 59K icons.f7c2b4b747b1a225eb8d.eot

10 1.1K index.html

11 1.4K inline.44deb5fed75ee6385e18.bundle.js

12 17K main.c683e6eda100e8873d71.bundle.js

13 82K polyfills.b81504c68200c7bfeb16.bundle.js

14 503K styles.7f23e351d688b00e8a5b.bundle.css

15 440K vendor.cc4297c08c0803bddc87.bundle.js

These files are the full compiled result of your app. Notice that there is a long
string of characters in the middle of each file such as:

Writing Your First Angular Web Application 72

1 main.c683e6eda100e8873d71.bundle.js

Those characters are a hash of the content (and may not match on your computer). If
you look at each file, you can see that we have some icons, the index.html, a main.js,
a polyfills.js, a vendor.js, and some styles.css. Now all the need to do is upload
these to our server.

Uploading to a Server

There are lots of ways to host your HTML and JavaScript. For this demo, we’re going
to use the easiest way possible: now²⁷.

If you don’t want to use now, you’re free to use whatever method you want.
For instance, you can host sites on Heroku, AWS S3, upload files to your
own server via FTP, etc.

The important thing is that the server exposes all of the files in our dist
folder onto the internet.

Installing now

We can install now using npm:

1 npm install -g now

To deploy a site with now is very easy:

1 cd dist/angular-reddit # change into the dist folder

2 now

The now command should ask you a couple of questions (such as your email address)
and you’ll need to check your email and click the link inside.

After you’ve confirmed your account (or if you had one already), now will upload
your code and then give you a URL to view to see your application.

Visit that URL and view your app. If it works, try sending the URL to a friend!

Congratulations! You’ve built and deployed your first Angular app!
²⁷https://zeit.co/now

https://zeit.co/now
https://zeit.co/now

Writing Your First Angular Web Application 73

Full Code Listing

We’ve been exploring many small pieces of code for this chapter. You can find all of
the files and the complete TypeScript code for our app in the example code download
included with this book.

Wrapping Up

We did it! We’ve created our first Angular App. That wasn’t so bad, was it?
There’s lots more to learn: understanding data flow, making AJAX requests, built-in
directives, routing, manipulating the DOM etc.

But for now, bask in our success! Much of writing Angular apps is just as we did
above:

1. Split your app into components
2. Create the views
3. Define your models
4. Display your models
5. Add interaction

In the future chapters of this book we’ll cover everything you need to write
sophisticated apps with Angular.

Getting Help

Did you have any trouble with this chapter? Did you find a bug or have trouble
getting the code running? We’d love to hear from you!

• Come join our community and chat with us on Discord²⁸
• Email us directly at us@fullstack.io²⁹

Onward!
²⁸https://newline.co/discord/ng-book
²⁹mailto:us@fullstack.io

https://newline.co/discord/ng-book
mailto:us@fullstack.io
https://newline.co/discord/ng-book
mailto:us@fullstack.io

TypeScript
Angular is built in TypeScript

Angular is built in a JavaScript-like language called TypeScript³⁰.

You might be skeptical of using a new language just for Angular, but it turns out,
there are a lot of great reasons to use TypeScript instead of plain JavaScript.

TypeScript isn’t a completely new language, it’s a superset of ES6. If we write ES6
code, it’s perfectly valid and compilable TypeScript code. Here’s a diagram that shows
the relationship between the languages:

³⁰http://www.typescriptlang.org/

http://www.typescriptlang.org/
http://www.typescriptlang.org/

TypeScript 75

ES5, ES6, and TypeScript

What is ES5? What is ES6? ES5 is short for “ECMAScript 5”, otherwise
known as “regular JavaScript”. ES5 is the normal JavaScript we all know
and love. It runs in more-or-less every browser. ES6 is the next version of
JavaScript, which we talk more about below.

At the publishing of this book, very few browsers will run ES6 out of the box,
much less TypeScript. To solve this issue we have transpilers (or sometimes called
transcompiler). The TypeScript transpiler takes our TypeScript code as input and
outputs ES5 code that nearly all browsers understand.

TypeScript 76

For converting TypeScript to ES5 there is a single transpiler written by
the core TypeScript team. However if we wanted to convert ES6 code (not
TypeScript) to ES5 there are two major ES6-to-ES5 transpilers: traceur³¹ by
Google and babel³² created by the JavaScript community. We’re not going
to be using either directly for this book, but they’re both great projects that
are worth knowing about.

We installed TypeScript in the last chapter, but in case you’re just starting
out in this chapter, you can install it like so:

npm install -g typescript

TypeScript is an official collaboration between Microsoft and Google. That’s great
news because with two tech heavyweights behind it we know that it will be
supported for a long time. Both groups are committed to moving the web forward
and as developers we win because of it.

One of the great things about transpilers is that they allow relatively small teams
to make improvements to a language without requiring everyone on the internet
upgrade their browser.

One thing to point out: we don’t have to use TypeScript with Angular2. If you want
to use ES5 (i.e. “regular” JavaScript), you definitely can. There is an ES5 API that
provides access to all functionality of Angular2. Then why should we use TypeScript
at all? Because there are some great features in TypeScript that make development a
lot better.

What do we get with TypeScript?

There are five big improvements that TypeScript bring over ES5:

• types
• classes
• decorators
• imports

³¹https://github.com/google/traceur-compiler
³²https://babeljs.io/

https://github.com/google/traceur-compiler
https://babeljs.io/
https://github.com/google/traceur-compiler
https://babeljs.io/

TypeScript 77

• language utilities (e.g. destructuring)

Let’s deal with these one at a time.

Types

The major improvement of TypeScript over ES6, that gives the language its name, is
the typing system.

For some people the lack of type checking is considered one of the benefits of using
a language like JavaScript. You might be a little skeptical of type checking but I’d
encourage you to give it a chance. One of the great things about type checking is
that

1. it helps when writing code because it can prevent bugs at compile time and
2. it helps when reading code because it clarifies your intentions

It’s also worth noting that types are optional in TypeScript. If we want to write some
quick code or prototype a feature, we can omit types and gradually add them as the
code becomes more mature.

TypeScript’s basic types are the same ones we’ve been using implicitly when we
write “normal” JavaScript code: strings, numbers, booleans, etc.

Up until ES5, we would define variables with the var keyword, like var fullName;.

The new TypeScript syntax is a natural evolution from ES5, we still use var but now
we can optionally provide the variable type along with its name:

1 var fullName: string;

When declaring functions we can use types for arguments and return values:

TypeScript 78

1 function greetText(name: string): string {

2 return "Hello " + name;

3 }

In the example above we are defining a new function called greetText which takes
one argument: name. The syntax name: string says that this function expects name
to be a string. Our code won’t compile if we call this function with anything other
than a string and that’s a good thing because otherwise we’d introduce a bug.

Notice that the greetText function also has a new syntax after the parentheses: :
string {. The colon indicates that we will specify the return type for this function,
which in this case is a string. This is helpful because 1. if we accidentally return
anything other than a string in our code, the compiler will tell us that we made a
mistake and 2. any other developers who want to use this function know precisely
what type of object they’ll be getting.

Let’s see what happens if we try to write code that doesn’t conform to our declared
typing:

1 function hello(name: string): string {

2 return 12;

3 }

If we try to compile it, we’ll see the following error:

1 $ tsc compile-error.ts

2 compile-error.ts(2,12): error TS2322: Type 'number' is not assignable to type 'string'.

What happened here? We tried to return 12 which is a number, but we stated
that hello would return a string (by putting the): string { after the argument
declaration).

In order to correct this, we need to update the function declaration to return a number:

1 function hello(name: string): number {

2 return 12;

3 }

TypeScript 79

This is one small example, but already we can see that by using types it can save us
from a lot of bugs down the road.

So now that we know how to use types, how can we know what types are available
to use? Let’s look at the list of built-in types, and then we’ll figure out how to create
our own.

Trying it out with a REPL

To playwith the examples in this chapter, let’s install a nice little utility calledTSUN³³
(TypeScript Upgraded Node):

1 $ npm install -g tsun

Now start tsun:

1 $ tsun

2 TSUN : TypeScript Upgraded Node

3 type in TypeScript expression to evaluate

4 type :help for commands in repl

5

6 >

That little > is the prompt indicating that TSUN is ready to take in commands.

In most of the examples below, you can copy and paste into this terminal and follow
along.

Built-in types

String

A string holds text and is declared using the string type:

³³https://github.com/HerringtonDarkholme/typescript-repl

https://github.com/HerringtonDarkholme/typescript-repl
https://github.com/HerringtonDarkholme/typescript-repl

TypeScript 80

1 var fullName: string = 'Nate Murray';

Number

A number is any type of numeric value. In TypeScript, all numbers are represented
as floating point. The type for numbers is number:

1 var age: number = 36;

Boolean

The boolean holds either true or false as the value.

1 var married: boolean = true;

Array

Arrays are declared with the Array type. However, because an Array is a collection,
we also need to specify the type of the objects in the Array.

We specify the type of the items in the array with either the Array<type> or type[]
notations:

1 var jobs: Array<string> = ['IBM', 'Microsoft', 'Google'];

2 var jobs: string[] = ['Apple', 'Dell', 'HP'];

Or similarly with a number:

1 var chickens: Array<number> = [1, 2, 3];

2 var chickens: number[] = [4, 5, 6];

Enums

Enums work by naming numeric values. For instance, if we wanted to have a fixed
list of roles a person may have we could write this:

TypeScript 81

1 enum Role {Employee, Manager, Admin};

2 var role: Role = Role.Employee;

The default initial value for an enum is 0, though you can set the starting enum
number like this:

1 enum Role {Employee = 3, Manager, Admin};

2 var role: Role = Role.Employee;

In the code above, instead of Employee being 0, Employee is 3. The value of the enum
increments from there, which means Manager is 4 and Admin is 5, and we can even
set individual values:

1 enum Role {Employee = 3, Manager = 5, Admin = 7};

2 var role: Role = Role.Employee;

You can also look up the name of a given enum by using its value:

1 enum Role {Employee, Manager, Admin};

2 console.log('Roles: ', Role[0], ',', Role[1], 'and', Role[2]);

Any

any is the default type if we omit typing for a given variable. Having a variable of
type any allows it to receive any kind of value:

1 var something: any = 'as string';

2 something = 1;

3 something = [1, 2, 3];

Void

Using void means there’s no type expected. This is usually in functions with no
return value:

TypeScript 82

1 function setName(name: string): void {

2 this.fullName = name;

3 }

Classes

In JavaScript ES5 object oriented programming was accomplished by using proto-
type-based objects. This model doesn’t use classes, but instead relies on prototypes.

A number of good practices have been adopted by the JavaScript community to
compensate the lack of classes. A good summary of those good practices can be
found in Mozilla Developer Network’s JavaScript Guide³⁴, and you can find a good
overview on the Introduction to Object-Oriented JavaScript³⁵ page.

However, in ES6 we finally have built-in classes in JavaScript.

To define a class we use the new class keyword and give our class a name and a
body:

1 class Vehicle {

2 }

Classes may have properties, methods, and constructors.

Properties

Properties define data attached to an instance of a class. For example, a class named
Person might have properties like first_name, last_name and age.

Each property in a class can optionally have a type. For example, we could say that the
first_name and last_name properties are strings and the age property is a number.

The declaration for a Person class that looks like this:

³⁴https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
³⁵https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

TypeScript 83

1 class Person {

2 first_name: string;

3 last_name: string;

4 age: number;

5 }

Methods

Methods are functions that run in context of an object. To call a method on an object,
we first have to have an instance of that object.

To instantiate a class, we use the new keyword. Use new Person() to create
a new instance of the Person class, for example.

If we wanted to add a way to greet a Person using the class above, we would write
something like:

class Person {

first_name: string;

last_name: string;

age: number;

greet() {

console.log("Hello", this.first_name);

}

}

Notice that we’re able to access the first_name for this Person by using the this

keyword and calling this.first_name.

When methods don’t declare an explicit returning type and return a value, it’s
assumed they can return anything (any type). However, in this case we are returning
void, since there’s no explicit return statement.

Note that a void value is also a valid any value.

In order to invoke the greetmethod, you would need to first have an instance of the
Person class. Here’s how we do that:

TypeScript 84

// declare a variable of type Person

var p: Person;

// instantiate a new Person instance

p = new Person();

// give it a first_name

p.first_name = 'Felipe';

// call the greet method

p.greet();

You can declare a variable and instantiate a class on the same line if you
want:

1 var p: Person = new Person();

Say we want to have a method on the Person class that returns a value. For instance,
to know the age of a Person in a number of years from now, we could write:

class Person {

first_name: string;

last_name: string;

age: number;

greet() {

console.log("Hello", this.first_name);

}

ageInYears(years: number): number {

return this.age + years;

}

}

TypeScript 85

// instantiate a new Person instance

var p: Person = new Person();

// set initial age

p.age = 6;

// how old will he be in 12 years?

p.ageInYears(12);

// -> 18

Constructors

A constructor is a special method that is executed when a new instance of the class
is being created. Usually, the constructor is where you perform any initial setup for
new objects.

Constructor methods must be named constructor. They can optionally take pa-
rameters but they can’t return any values, since they are called when the class is
being instantiated (i.e. an instance of the class is being created, no other value can
be returned).

In order to instantiate a class we call the class constructor method by using
the class name: new ClassName().

When a class has no constructor defined explicitly one will be created automatically:

1 class Vehicle {

2 }

3 var v = new Vehicle();

Is the same as:

TypeScript 86

1 class Vehicle {

2 constructor() {

3 }

4 }

5 var v = new Vehicle();

In TypeScript you can have only one constructor per class.

That is a departure from ES6 which allows one class to have more than one
constructor as long as they have a different number of parameters.

Constructors can take parameters when we want to parameterize our new instance
creation.

For example, we can change Person to have a constructor that initializes our data:

class Person {

first_name: string;

last_name: string;

age: number;

constructor(first_name: string, last_name: string, age: number) {

this.first_name = first_name;

this.last_name = last_name;

this.age = age;

}

greet() {

console.log("Hello", this.first_name);

}

ageInYears(years: number): number {

return this.age + years;

}

}

It makes our previous example a little easier to write:

TypeScript 87

1 var p: Person = new Person('Felipe', 'Coury', 36);

2 p.greet();

This way the person’s names and age are set for us when the object is created.

Inheritance

Another important aspect of object oriented programming is inheritance. Inheritance
is a way to indicate that a class receives behavior from a parent class. Then we can
override, modify or augment those behaviors on the new class.

If you want to have a deeper understanding of how inheritance used to
work in ES5, take a look at the Mozilla Developer Network article about it:
Inheritance and the prototype chain³⁶.

TypeScript fully supports inheritance and, unlike ES5, it’s built into the core language.
Inheritance is achieved through the extends keyword.

To illustrate, let’s say we’ve created a Report class:

class Report {

data: Array<string>;

constructor(data: Array<string>) {

this.data = data;

}

run() {

this.data.forEach(function(line) { console.log(line); });

}

}

This report has a property data which is an Array of strings. When we call run we
loop over each element of data and print them out using console.log

.forEach is a method on Array that accepts a function as an argument and
calls that function for each element in the Array.

³⁶https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

TypeScript 88

This Report works by adding lines and then calling run to print out the lines:

1 var r: Report = new Report(['First line', 'Second line']);

2 r.run();

Running this should show:

1 First line

2 Second line

Now let’s say we want to have a second report that takes some headers and some
data but we still want to reuse how the Report class presents the data to the user.

To reuse that behavior from the Report class we can use inheritance with the extends
keyword:

class TabbedReport extends Report {

headers: Array<string>;

constructor(headers: string[], values: string[]) {

super(values)

this.headers = headers;

}

run() {

console.log(this.headers);

super.run();

}

}

1 var headers: string[] = ['Name'];

2 var data: string[] = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];

3 var r: TabbedReport = new TabbedReport(headers, data)

4 r.run();

TypeScript 89

Utilities

ES6, and by extension TypeScript provides a number of syntax features that make
programming really enjoyable. Two important ones are:

• fat arrow function syntax
• template strings

Fat Arrow Functions

Fat arrow => functions are a shorthand notation for writing functions.

In ES5, whenever we want to use a function as an argument we have to use the
function keyword along with {} braces like so:

1 // ES5-like example

2 var data = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];

3 data.forEach(function(line) { console.log(line); });

However with the => syntax we can instead rewrite it like so:

1 // Typescript example

2 var data: string[] = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];

3 data.forEach((line) => console.log(line));

Parentheses are optional when there’s only one parameter. The => syntax can be used
both as an expression:

1 var evens = [2,4,6,8];

2 var odds = evens.map(v => v + 1);

Or as a statement:

TypeScript 90

1 data.forEach(line => {

2 console.log(line.toUpperCase())

3 });

One important feature of the => syntax is that it shares the same this as the
surrounding code. This is important and different than what happens when you
normally create a function in JavaScript. Generally when you write a function in
JavaScript that function is given its own this. Sometimes in JavaScript we see code
like this:

1 var nate = {

2 name: "Nate",

3 guitars: ["Gibson", "Martin", "Taylor"],

4 printGuitars: function() {

5 var self = this;

6 this.guitars.forEach(function(g) {

7 // this.name is undefined so we have to use self.name

8 console.log(self.name + " plays a " + g);

9 });

10 }

11 };

Because the fat arrow shares this with its surrounding code, we can instead write
this:

1 var nate = {

2 name: "Nate",

3 guitars: ["Gibson", "Martin", "Taylor"],

4 printGuitars: function() {

5 this.guitars.forEach((g) => {

6 console.log(this.name + " plays a " + g);

7 });

8 }

9 };

Arrows are a great way to cleanup your inline functions. It makes it even easier to
use higher-order functions in JavaScript.

TypeScript 91

Template Strings

In ES6 new template strings were introduced. The two great features of template
strings are

1. Variables within strings (without being forced to concatenate with +) and
2. Multi-line strings

Variables in strings

This feature is also called “string interpolation.” The idea is that you can put variables
right in your strings. Here’s how:

1 var firstName = "Nate";

2 var lastName = "Murray";

3

4 // interpolate a string

5 var greeting = `Hello ${firstName} ${lastName}`;

6

7 console.log(greeting);

Note that to use string interpolation you must enclose your string in backticks not
single or double quotes.

Multiline strings

Another great feature of backtick strings is multi-line strings:

TypeScript 92

1 var template = `

2 <div>

3 <h1>Hello</h1>

4 <p>This is a great website</p>

5 </div>

6 `

7

8 // do something with `template`

Multiline strings are a huge help when we want to put strings in our code that are a
little long, like templates.

Wrapping up

There are a variety of other features in TypeScript/ES6 such as:

• Interfaces
• Generics
• Importing and Exporting Modules
• Decorators
• Destructuring

We’ll be touching on these concepts as we use them throughout the book, but for
now these basics should get you started.

Let’s get back to Angular!

How Angular Works
In this chapter, we’re going to talk about the high-level concepts of Angular. We’re
going to take a step back so that we can see how all the pieces fit together.s

If you’ve used AngularJS 1.x, you’ll notice that Angular has a new mental-
model for building applications. Don’t panic! As AngularJS 1.x users
ourselves we’ve found Angular to be both straightforward and familiar. A
little later in this book we’re going to talk specifically about how to convert
your AngularJS 1.x apps to Angular.

In the chapters that follow, we won’t be taking a deep dive into each concept, but
instead we’re going to give an overview and explain the foundational ideas.

The first big idea is that an Angular application is made up of Components. One
way to think of Components is a way to teach the browser new tags. If you have an
Angular 1 background, Components are analogous to directives in AngularJS 1.x (it
turns out, Angular has directives too, but we’ll talk more about this distinction later
on).

However, Angular Components have some significant advantages over AngularJS 1.x
directives and we’ll talk about that below. First, let’s start at the top: the Application.

Application

An Angular Application is nothing more than a tree of Components.

At the root of that tree, the top level Component is the application itself. And that’s
what the browser will render when “booting” (a.k.a bootstrapping) the app.

One of the great things about Components is that they’re composable. This means
that we can build up larger Components from smaller ones. The Application is simply
a Component that renders other Components.

How Angular Works 94

Because Components are structured in a parent/child tree, when each Component
renders, it recursively renders its children Components.

For example, let’s create a simple inventory management application that is repre-
sented by the following page mockup:

Inventory Management App

Given this mockup, to write this application the first thing we want to do is split it
into components.

In this example, we could group the page into three high level components

1. The Navigation Component
2. The Breadcrumbs Component
3. The Product List Component

How Angular Works 95

The Navigation Component

This component would render the navigation section. This would allow the user to
visit other areas of the application.

Navigation Component

The Breadcrumbs Component

This would render a hierarchical representation of where in the application the user
currently is.

Breadcrumbs Component

The Product List Component

The Products List component would be a representation of a collection of products.

Product List Component

Breaking this component down into the next level of smaller components, we could
say that the Product List is composed of multiple Product Rows.

How Angular Works 96

Product Row Component

And of course, we could continue one step further, breaking each Product Row into
smaller pieces:

• the Product Image component would be responsible for rendering a product
image, given its image name

• the Product Department component would render the department tree, like
Men > Shoes > Running Shoes

• the Price Display component would render the price. Imagine that our imple-
mentation customizes the pricing if the user is logged in to include system-wide
tier discounts or include shipping for instance. We could implement all this
behavior into this component.

Finally, putting it all together into a tree representation, we end upwith the following
diagram:

How Angular Works 97

App Tree Diagram

At the top we see Inventory Management App: that’s our application.

Under the application we have the Navigation, the Breadcrumb and the Products List
components.

The Products List component has Product Rows, one for each product.

And the Product Row uses three components itself: one for the image, the depart-
ment, and the price.

Let’s work together to build this application.

You can find the full code listing for this chapter in the downloads under
how-angular-works/inventory-app.

How Angular Works 98

Here’s a screenshot of what our app will look like when we’re done:

Completed Inventory App

How to Use This Chapter

In this chapter we’re going to explain the fundamental concepts required when
building Angular apps by walking through an app that we’ve built. We’ll explain:

• How to break your app into components
• How to make reusable components using inputs
• How to handle user interactions, such as clicking on a component

In this chapter, we’ve used angular-cli, just as we did before. This means you can
use all of the normal ng commands such as:

How Angular Works 99

ng serve # runs the app

Also, in this chapter, we’re not going to give step-by-step instructions on how to
create each file in the app. If you’d like to follow along at home, when we introduce
a new component you can run:

ng generate component NameOfNewComponentHere

This will generate the files you need, and you’re free to type in your code there or
copy and paste code from the book or from our example code.

We’ve provided the entire, completed application in the code download folder under
how-angular-works/inventory-app. If you ever feel lost or need more context, take
some time to look at the completed example code.

Let’s get started building!

Product Model

One of the key things to realize about Angular is that it doesn’t prescribe a
particular model library.

Angular is flexible enough to support many different kinds of models (and data
architectures). However, this means the choice is left to you as the user to determine
how to implement these things.

We’ll have a lot to say about data architectures in future chapters. For now, though,
we’re going to have our models be plain JavaScript objects.

How Angular Works 100

code/how-angular-works/inventory-app/src/app/product.model.ts

1 /**

2 * Provides a `Product` object

3 */

4 export class Product {

5 constructor(

6 public sku: string,

7 public name: string,

8 public imageUrl: string,

9 public department: string[],

10 public price: number) {

11 }

12 }

If you’re new to ES6/TypeScript this syntax might be a bit unfamiliar.

We’re creating a new Product class and the constructor takes 5 arguments. When
we write public sku: string, we’re saying two things:

• there is a public variable on instances of this class called sku

• sku is of type string.

If you’re already familiar with JavaScript, you can quickly catch up on
some of the differences, including the public constructor shorthand, here
at learnxinyminutes³⁷

This Product class doesn’t have any dependencies on Angular, it’s just a model that
we’ll use in our app.

Components

Aswementioned before, Components are the fundamental building block of Angular
applications. The “application” itself is just the top-level Component. Then we break
our application into smaller child Components.

³⁷https://learnxinyminutes.com/docs/typescript/

https://learnxinyminutes.com/docs/typescript/
https://learnxinyminutes.com/docs/typescript/
https://learnxinyminutes.com/docs/typescript/

How Angular Works 101

When building new Angular applications, we often follow this process: we
mockup the design in wireframes (or on paper) and then we break down
the parts into Components.

We’ll be using Components a lot, so it’s worth looking at them more closely.

Each component is composed of three parts:

• Component Decorator
• A View
• A Controller

To illustrate the key concepts we need to understand about components, we’ll start
with the top level Inventory App and then focus on the Products List and child
components:

How Angular Works 102

Products List Component

Here’s what a basic, top-level AppComponent looks like:

@Component({

selector: "inventory-app-root",

template: `

<div class="inventory-app">

(Products will go here soon)

</div>

`

})

export class AppComponent {

// Inventory logic here

}

How Angular Works 103

If you’ve been using Angular 1 the syntax might look pretty foreign! But
the ideas are pretty similar, so let’s take them step by step.

The @Component is called a decorator. It adds metadata to the class that follows it
(AppComponent). The @Component decorator specifies:

• a selector, which tells Angular what element to match
• a template, which defines the view

The Component controller is defined by a class, the AppComponent class, in this
case.

Let’s take a look into each part now in more detail.

Component Decorator

The @Component decorator is where you configure your component. One of the
primary roles of the @Component decorator is to configure how the outside world
will interact with your component.

There are lots of options available to configure a component (many of
which we cover in the Advanced Components Chapter). In this chapter
we’re just going to touch on the basics.

Component selector

With the selector key, you indicate how your component will be recognized when
used in a template. The idea is similar to CSS or XPath selectors. The selector is a
way to define what elements in the HTMLwill match this component. In this case, by
saying selector: 'inventory-app-root', we’re saying that in our HTML we want
to match the inventory-app-root tag, that is, we’re defining a new tag that has new
functionality whenever we use it. E.g. when we put this in our HTML:

<inventory-app-root></inventory-app-root>

Angular will use the AppComponent component to implement the functionality.

How Angular Works 104

Component template

The view is the visual part of the component. By using the template option on
@Component, we declare the HTML template that the component will use:

@Component({

selector: 'inventory-app-root',

template: `

<div class="inventory-app">

(Products will go here soon)

</div>

`

})

For the template above, notice that we’re using TypeScript’s backtick multi-line
string syntax. Our template so far is pretty sparse: just a div with some placeholder
text.

We can also move our template out to a separate file and use templateUrl instead:

@Component({

selector: "inventory-app-root",

templateUrl: "./app.component.html"

})

export class AppComponent {

// Inventory logic here

}

Adding A Product

Our app isn’t very interesting without Products to view. Let’s add some now.

We can create a new Product like this:

How Angular Works 105

// this is just an example of how to use Product,

// we'll do something similar in our Angular code in a moment

// first, we have to import `Product` so that we can use it

import { Product } from "./product.model";

// now we can create a new `Product`

let newProduct = new Product(

"NICEHAT", // sku

"A Nice Black Hat", // name

"/assets/images/products/black-hat.jpg", // imageUrl

["Men", "Accessories", "Hats"], // department

29.99

); // price

Our constructor for Product takes 5 arguments. We can create a new Product by
using the new keyword.

Normally, I probably wouldn’t pass more than a few arguments to a
function. Another option here is to configure the Product class to take an
Object in the constructor, then we wouldn’t have to remember the order
of the arguments. That is, Product could be changed to do something like
this:

new Product({sku: “MYHAT”, name: “A green hat”})

But for now, this 5 argument constructor is easy to use.

We want to be able to show this Product in the view. In order to make properties
accessible to our template we add them as instance variables to the Component.

For example, if we want to access newProduct in our view we could write:

How Angular Works 106

import { Product } from "./product.model";

export class AppComponent {

product: Product;

constructor() {

let newProduct = new Product(

"NICEHAT",

"A Nice Black Hat",

"/resources/images/products/black-hat.jpg",

["Men", "Accessories", "Hats"],

29.99

);

this.product = newProduct;

}

}

or more concisely:

export class AppComponent {

product: Product;

constructor() {

this.product = new Product(

"NICEHAT",

"A Nice Black Hat",

"/resources/images/products/black-hat.jpg",

["Men", "Accessories", "Hats"],

29.99

);

}

}

Notice that we did three things here:

1. We added a constructor - When Angular creates a new instance of this
Component, it calls the constructor function. This is where we can put setup
for this Component.

2. We described an instance variable - On AppComponent, when we write:
product: Product, we’re specifying that the AppComponent instances have a
property product which is a Product object.

3. We assigned a Product to product - In the constructor we create an instance
of Product and assigned it to the instance variable

How Angular Works 107

Viewing the Product with Template Binding

Now that we have product assigned to the AppComponent instance, we could use that
variable in our view template:

<div class="inventory-app">

<h1>{{ product.name }}</h1>

{{ product.sku }}

</div>

Using the {{…}} syntax is called template binding. It tells the view we want to use
the value of the expression inside the brackets at this location in our template.

So in this case, we have two bindings:

• {{ product.name }}

• {{ product.sku }}

The product variable comes from the instance variable product on our Component
instance of AppComponent.

What’s neat about template binding is that the code inside the brackets is an
expression. That means you can do things like this:

• {{ count + 1 }}

• {{ myFunction(myArguments) }}

In the first case, we’re using an operator to change the displayed value of count.
In the second case, we’re able to replace the tags with the value of the function
myFunction(myArguments). Using template binding tags is the main way that you’ll
show data in your Angular applications.

Adding More Products

In the code above, we’re only able to show a single product in our app, but we want
to be able to show a list of products. Let’s change our AppComponent to store an array
of Products rather than a single Product:

How Angular Works 108

export class AppComponent {

products: Product[];

constructor() {

this.products = [];

}

}

Notice that we’ve renamed the variable product to products, and we’ve changed the
type to Product[]. The [] characters at the end mean we want products to be an
Array of Products. We also could have written this as: Array<Product>.

Now that our AppComponent holds an array of Products. Let’s create some Products
in the constructor:

code/how-angular-works/inventory-app/src/app/app.component.ts

15 export class AppComponent {

16 products: Product[];

17

18 constructor() {

19 this.products = [

20 new Product(

21 'MYSHOES',

22 'Black Running Shoes',

23 '/assets/images/products/black-shoes.jpg',

24 ['Men', 'Shoes', 'Running Shoes'],

25 109.99),

26 new Product(

27 'NEATOJACKET',

28 'Blue Jacket',

29 '/assets/images/products/blue-jacket.jpg',

30 ['Women', 'Apparel', 'Jackets & Vests'],

31 238.99),

32 new Product(

33 'NICEHAT',

34 'A Nice Black Hat',

35 '/assets/images/products/black-hat.jpg',

36 ['Men', 'Accessories', 'Hats'],

37 29.99)

38];

39 }

This code will give us some Products to work with in our app.

How Angular Works 109

Selecting a Product

We (eventually) want to support user interaction in our app. For instance, the user
might select a particular product to view more information about the product, add
it to the cart, etc.

Let’s add some functionality here in our AppComponent to handle what happens when
a new Product is selected. To do that, let’s define a new function, productWasSe-
lected:

code/how-angular-works/inventory-app/src/app/app.component.ts

41 productWasSelected(product: Product): void {

42 console.log('Product clicked: ', product);

43 }

This function accepts a single argument product and then it will log out that the
product was passed in. We’ll use this function in a bit.

Listing products using <products-list>

Now that we have our top-level AppComponent component, we need to add a new
component for rendering a list of products. In the next section we’ll create the
implementation of a ProductsList component that matches the selector products-
list. Before we dive into the implementation details, here’s how we will use this
new component in our template:

code/how-angular-works/inventory-app/src/app/app.component.html

1 <div class="inventory-app">

2 <products-list

3 [productList]="products"

4 (onProductSelected)="productWasSelected($event)">

5 </products-list>

6 </div>

There is some new syntax here, so let’s talk about each part:

How Angular Works 110

Inputs and Outputs

When we use products-list we’re using a key feature of Angular components:
inputs and outputs:

<products-list

[productList]="products" <!-- input -->

(onProductSelected)="productWasSelected($event)"> <!-- output -->

</products-list>

The [squareBrackets] pass inputs and the (parentheses) handle outputs.

Data flows in to your component via input bindings and events flow out of your
component through output bindings.

Think of the set of input + output bindings as defining the public API of your
component.

[squareBrackets] pass inputs

In Angular, you pass data into child components via inputs.

In our code where we show:

<products-list

[productList]="products"

We’re using an input of the ProductList component.

It can be tricky to understand where products/productList are coming from. There
are two sides to this attribute:

• [productList] (the left-hand side) and
• "products" (the right-hand side)

The left-hand side [productList] says we want to use the productList input of the
products-list component (we’ll show how to define that in a moment).

The right-hand side "products" says that we want to send the value of the expression
products. That is, the array this.products in the AppComponent class.

How Angular Works 111

You might ask, “how would I know that productList is a valid input to
the products-list component? The answer is: you’d read the docs for that
component. The inputs (and outputs) are part of the “public API” of a
component.

You’d know the inputs for a component that you’re using in the same way
that you’d know what the arguments are for a function that you’re using.

That said, we’ll define the products-list component in a moment, and
we’ll see exactly how the productList input is defined.

(parens) handle outputs

In Angular, you send data out of components via outputs.

In our code where we show:

<products-list

...

(onProductSelected)="productWasSelected($event)">

We’re saying that we want to listen to the onProductSelected output from the
ProductsList component.

That is:

• (onProductSelected), the left-hand side is the name of the output we want to
“listen” on

• "productWasSelected", the right-hand side is the function we want to call
when something new is sent to this output

• $event is a special variable here that represents the thing emitted on (i.e. sent
to) the output.

Now, we haven’t talked about how to define inputs or outputs on our own
components yet, but we will shortly when we define the ProductsList component.
For now, know that we can pass data to child components through inputs (like
“arguments” to a function) and we can receive data out of a child component through
outputs (sort of like “return values” from a function).

How Angular Works 112

Full AppComponent Listing

We broke the AppComponent up into several chunks above. So that we can see the
whole thing together, here’s the full code listing of our AppComponent:

code/how-angular-works/inventory-app/src/app/app.component.ts

1 import {

2 Component,

3 EventEmitter

4 } from '@angular/core';

5

6 import { Product } from './product.model';

7

8 /**

9 * @InventoryApp: the top-level component for our application

10 */

11 @Component({

12 selector: 'inventory-app-root',

13 templateUrl: './app.component.html'

14 })

15 export class AppComponent {

16 products: Product[];

17

18 constructor() {

19 this.products = [

20 new Product(

21 'MYSHOES',

22 'Black Running Shoes',

23 '/assets/images/products/black-shoes.jpg',

24 ['Men', 'Shoes', 'Running Shoes'],

25 109.99),

26 new Product(

27 'NEATOJACKET',

28 'Blue Jacket',

29 '/assets/images/products/blue-jacket.jpg',

30 ['Women', 'Apparel', 'Jackets & Vests'],

31 238.99),

32 new Product(

33 'NICEHAT',

34 'A Nice Black Hat',

35 '/assets/images/products/black-hat.jpg',

36 ['Men', 'Accessories', 'Hats'],

37 29.99)

38];

How Angular Works 113

39 }

40

41 productWasSelected(product: Product): void {

42 console.log('Product clicked: ', product);

43 }

44 }

and the template:

code/how-angular-works/inventory-app/src/app/app.component.html

1 <div class="inventory-app">

2 <products-list

3 [productList]="products"

4 (onProductSelected)="productWasSelected($event)">

5 </products-list>

6 </div>

The ProductsListComponent

Now that we have our top-level application component, let’s write the ProductsList-
Component, which will render a list of product rows.

We want to allow the user to select one Product and we want to keep track of which
Product is the currently selected one. The ProductsListComponent is a great place to
do this because it “knows” all of the Products at the same time.

Let’s write the ProductsListComponent in three steps:

• Configuring the ProductsListComponent @Component options
• Writing the ProductsListComponent controller class
• Writing the ProductsListComponent view template

Configuring the ProductsListComponent @Component Options

Let’s take a look at the @Component configuration for ProductsListComponent:

How Angular Works 114

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

1 import {

2 Component,

3 EventEmitter,

4 Input,

5 Output

6 } from '@angular/core';

7 import { Product } from '../product.model';

8

9 /**

10 * @ProductsList: A component for rendering all ProductRows and

11 * storing the currently selected Product

12 */

13 @Component({

14 selector: 'products-list',

15 templateUrl: './products-list.component.html'

16 })

17 export class ProductsListComponent {

18 /**

19 * @input productList - the Product[] passed to us

20 */

21 @Input() productList: Product[];

22

23 /**

24 * @output onProductSelected - outputs the current

25 * Product whenever a new Product is selected

26 */

27 @Output() onProductSelected: EventEmitter<Product>;

We start our ProductsListComponent with a familiar option: selector. This selector
means we can place our ProductsListComponent with the tag <products-list>.
We’ve also defined two properties productList and onProductSelected. Notice
that productList has a @Input() annotation, denoting that it is an input and
onProductSelected has an @Output() annotation, denoting that it is an output.

Component inputs

Inputs specify the parameters we expect our component to receive. To designate
an input, we use the @Input() decoration on a component class property.

How Angular Works 115

When we specify that a Component takes an input, it is expected that the definition
class will have an instance variable that will receive the value. For example, say
we have the following code:

import { Component, Input } from "@angular/core";

@Component({

selector: "my-component"

})

class MyComponent {

@Input() name: string;

@Input() age: number;

}

The name and age inputs map to the name and age properties on instances of the
MyComponent class.

If we need to use two different names for the attribute and the property,
we could for example write @Input('firstname') name: String;. But the
Angular Style Guide³⁸ suggests to avoid this.

If we want to use MyComponent from another template, we write something like: <my-
component [name]="myName" [age]="myAge"></my-component>.

Notice that the attribute name matches the input name, which in turn matches the
MyComponent property name. However, these don’t always have to match.

For instance, say we wanted our attribute key and instance property to differ. That
is, we want to use our component like this:

<my-component [shortName]="myName" [oldAge]="myAge"></my-component>

To do this, we would change the format of the string in the inputs option:

³⁸https://angular.io/docs/ts/latest/guide/style-guide.html

https://angular.io/docs/ts/latest/guide/style-guide.html
https://angular.io/docs/ts/latest/guide/style-guide.html

How Angular Works 116

@Component({

selector: "my-component"

})

class MyComponent {

@Input("shortName") name: string;

@Input("oldAge") age: number;

}

• The property name (name, age) represent how that incoming property will be
visible (“bound”) in the controller.

• The @Input argument (shortName, oldAge) configures how the property is
visible to the “outside world”.

Passing products through via the inputs

If you recall, in our AppComponent, we passed products to our products-list via the
[productList] input:

code/how-angular-works/inventory-app/src/app/app.component.html

1 <div class="inventory-app">

2 <products-list

3 [productList]="products"

4 (onProductSelected)="productWasSelected($event)">

5 </products-list>

6 </div>

Hopefully this syntaxmakesmore sense now:we’re passing the value of this.products
(on the AppComponent) in via an input on ProductsListComponent.

Component outputs

When you want to send data from your component to the outside world, you use
output bindings.

Let’s say a component we’re writing has a button and we need to do something when
that button is clicked.

How Angular Works 117

The way to do this is by binding the click output of the button to a method declared
on our component’s controller. You do that using the (output)="action" notation.

Here’s an example where we keep a counter and increment (or decrement) based on
which button is pressed:

@Component({ selector: ‘counter’, template: {{ value }} <button (click)="increase()">Increase</button>

<button (click)="decrease()">Decrease</button> }) class Counter { value: num-
ber;

1 constructor() {

2 this.value = 1;

3 }

4

5 increase() {

6 this.value = this.value + 1;

7 return false;

8 }

9

10 decrease() {

11 this.value = this.value - 1;

12 return false;

13 }

14 }

In this example we’re saying that every time the first button is clicked, we want the
increase()method on our controller to be invoked. And, similarly, when the second
button is clicked, we want to call the decrease() method.

The parentheses attribute syntax looks like this: (output)="action". In this case, the
output we’re listening for is the click event on this button. There are many other
built-in events we can listen to such as: mousedown, mousemove, dbl-click, etc.

In this example, the event is internal to the component. That is, calling increase()

increments this.value, but there’s no effect that leaves this component. When
creating our own components we can also expose “public events” (component
outputs) that allow the component to talk to the outside world.

The key thing to understand here is that in a view, we can listen to an event by using
the (output)="action" syntax.

How Angular Works 118

Emitting Custom Events

Let’s say we want to create a component that emits a custom event, like click or
mousedown above. To create a custom output event we do three things:

1. Specify outputs in the @Component configuration
2. Attach an EventEmitter to the output property
3. Emit an event from the EventEmitter, at the right time

Perhaps EventEmitter is unfamiliar to you. Don’t panic! It’s not too hard.

An EventEmitter is an object that helps you implement the Observer
Pattern³⁹. That is, it’s an object that will:

1. maintain a list of subscribers and
2. publish events to them.

That’s it.

Here’s a short and sweet example of how you can use EventEmitter

let ee = new EventEmitter(); ee.subscribe((name: string) ⇒ con-
sole.log(Hello ${name})); ee.emit(“Nate”);

// -> “Hello Nate”

When we assign an EventEmitter to an output Angular automatically
subscribes for us. You don’t need to do the subscription yourself (though in
a special situation you could add your own subscriptions, if you want to).

Here’s an example of how we write a component that has outputs:

³⁹https://en.wikipedia.org/wiki/Observer_pattern

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

How Angular Works 119

@Component({

selector: "single-component",

template: `

<button (click)="liked()">Like it?</button>

`

})

class SingleComponent {

@Output() putRingOnIt: EventEmitter<string>;

constructor() {

this.putRingOnIt = new EventEmitter();

}

liked(): void {

this.putRingOnIt.emit("oh oh oh");

}

}

Notice that we did all three steps: 1. specified outputs, 2. created an EventEmitter

that we attached to the output property putRingOnIt and 3. Emitted an event when
liked is called.

If we wanted to use this output in a parent component we could do something like
this:

@Component({

selector: "club",

template: `

<div>

<single-component

(putRingOnIt)="ringWasPlaced($event)"

></single-component>

</div>

`

})

class ClubComponent {

ringWasPlaced(message: string) {

console.log(`Put your hands up: ${message}`);

}

}

// logged -> "Put your hands up: oh oh oh"

Again, notice that:

How Angular Works 120

• putRingOnIt comes from the outputs of SingleComponent
• ringWasPlaced is a function on the ClubComponent
• $event contains the thing that was emitted, in this case a string

Writing the ProductsListComponent Controller Class

Back to our store example, our ProductsListComponent controller class needs three
instance variables:

• One to hold the list of Products (that come from the productList input)
• One to output events (that emit from the onProductSelected output)
• One to hold a reference to the currently selected product

Here’s how we define those in code:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

17 export class ProductsListComponent {

18 /**

19 * @input productList - the Product[] passed to us

20 */

21 @Input() productList: Product[];

22

23 /**

24 * @output onProductSelected - outputs the current

25 * Product whenever a new Product is selected

26 */

27 @Output() onProductSelected: EventEmitter<Product>;

28

29 /**

30 * @property currentProduct - local state containing

31 * the currently selected `Product`

32 */

33 private currentProduct: Product;

34

35 constructor() {

36 this.onProductSelected = new EventEmitter();

37 }

How Angular Works 121

Notice that our productList is an Array of Products - this comes in from the inputs.

onProductSelected is our output.

currentProduct is a property internal to ProductsListComponent. You might also
hear this being referred to as “local component state”. It’s only used here within the
component.

Writing the ProductsListComponent View Template

Here’s the template for our products-list component:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.html

1 <div class="ui items">

2 <product-row

3 *ngFor="let myProduct of productList"

4 [product]="myProduct"

5 (click)='clicked(myProduct)'

6 [class.selected]="isSelected(myProduct)">

7 </product-row>

8 </div>

Herewe’re using the product-row tag, which comes from the ProductRow component,
which we’ll define in a minute.

We’re using ngFor to iterate over each Product in productList. We’ve talked about
ngFor before in this book, but just as a reminder the let thing of things syntax
says, “iterate over things and create a copy of this element for each item, and assign
each item to the variable thing”.

So in this case, we’re iterating over the Products in productList and generating a
local variable myProduct for each one.

Style-wise, I probably wouldn’t call this variable myProduct in a real app.
Instead, I’d probably call it product, or even p. But here I want to be explicit
about what we’re passing, and myProduct is slightly clearer because it let’s
us distinguish the ‘local template variable’ from the input product.

The interesting thing to note about this myProduct variable is that we can now use it
even on the same tag. As you can see, we do this on the following three lines.

How Angular Works 122

The line that reads [product]="myProduct" says that we want to pass myProduct (the
local variable) to the input product of the product-row. (We’ll define this input when
we define the ProductRow component below.)

The (click)='clicked(myProduct)' line describes what we want to do when this
element is clicked. click is a built-in event that is triggered when the host element
is clicked on. In this case, we want to call the component function clicked on
ProductsListComponent whenever this element is clicked on.

The line [class.selected]="isSelected(myProduct)" is a fun one: Angular allows
us to set classes conditionally on an element using this syntax. This syntax says
“add the CSS class selected if isSelected(myProduct) returns true.” This is a really
handy way for us to mark the currently selected product.

You may have noticed that we didn’t define clicked nor isSelected yet, so let’s do
that now (in ProductsListComponent):

clicked

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

39 clicked(product: Product): void {

40 this.currentProduct = product;

41 this.onProductSelected.emit(product);

42 }

This function does two things:

1. Set this.currentProduct to the Product that was passed in.
2. Emit the Product that was clicked on our output

isSelected

How Angular Works 123

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

44 isSelected(product: Product): boolean {

45 if (!product || !this.currentProduct) {

46 return false;

47 }

48 return product.sku === this.currentProduct.sku;

49 }

This function accepts a Product and returns true if product’s sku matches the
currentProduct’s sku. It returns false otherwise.

The Full ProductsListComponent Component

Here’s the full code listing so we can see everything in context:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

1 import {

2 Component,

3 EventEmitter,

4 Input,

5 Output

6 } from '@angular/core';

7 import { Product } from '../product.model';

8

9 /**

10 * @ProductsList: A component for rendering all ProductRows and

11 * storing the currently selected Product

12 */

13 @Component({

14 selector: 'products-list',

15 templateUrl: './products-list.component.html'

16 })

17 export class ProductsListComponent {

18 /**

19 * @input productList - the Product[] passed to us

20 */

21 @Input() productList: Product[];

22

23 /**

24 * @output onProductSelected - outputs the current

How Angular Works 124

25 * Product whenever a new Product is selected

26 */

27 @Output() onProductSelected: EventEmitter<Product>;

28

29 /**

30 * @property currentProduct - local state containing

31 * the currently selected `Product`

32 */

33 private currentProduct: Product;

34

35 constructor() {

36 this.onProductSelected = new EventEmitter();

37 }

38

39 clicked(product: Product): void {

40 this.currentProduct = product;

41 this.onProductSelected.emit(product);

42 }

43

44 isSelected(product: Product): boolean {

45 if (!product || !this.currentProduct) {

46 return false;

47 }

48 return product.sku === this.currentProduct.sku;

49 }

50

51 }

and the template:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.html

1 <div class="ui items">

2 <product-row

3 *ngFor="let myProduct of productList"

4 [product]="myProduct"

5 (click)='clicked(myProduct)'

6 [class.selected]="isSelected(myProduct)">

7 </product-row>

8 </div>

How Angular Works 125

The ProductRowComponent Component

A Selected Product Row Component

Our ProductRowComponent displays our Product. ProductRowComponent will have its
own template, but will also be split up into three smaller Components:

• ProductImageComponent - for the image
• ProductDepartmentComponent - for the department “breadcrumbs”
• PriceDisplayComponent - for showing the product’s price

Here’s a visual of the three Components that will be used within the ProductRow-

Component:

ProductRowComponent’s Sub-components

Let’s take a look at the ProductRowComponent’s Component configuration, definition
class, and template:

How Angular Works 126

ProductRowComponent Configuration

The ProductRowComponent uses a lot of the ideas we’ve covered so far:

code/how-angular-works/inventory-app/src/app/product-row/product-row.component.ts

1 import {

2 Component,

3 Input,

4 HostBinding

5 } from '@angular/core';

6 import { Product } from '../product.model';

7

8 /**

9 * @ProductRow: A component for the view of single Product

10 */

11 @Component({

12 selector: 'product-row',

13 templateUrl: './product-row.component.html',

14 })

15 export class ProductRowComponent {

16 @Input() product: Product;

17 @HostBinding('attr.class') cssClass = 'item';

18 }

We start by defining the selector of product-row. We’ve seen this several times now
- this defines that this component will match the tag product-row.

Next we define that this row takes an @Input of product. This instance variable will
be set to the Product that was passed in from our parent Component.

The HostBinding decoration is new - it lets us set attributes on the host element.
The host is the element this component is attached to.

In this case, we’re using the Semantic UI item class⁴⁰. Here when we say @HostBind-

ing('attr.class') cssClass = 'item'; we’re saying that we want to attach the
CSS class item to the host element.

⁴⁰http://semantic-ui.com/views/item.html

http://semantic-ui.com/views/item.html
http://semantic-ui.com/views/item.html

How Angular Works 127

Using host is nice because it means we can configure our host element
from within the component. This is great because otherwise we’d require
the host element to specify the CSS tag and that is bad because we would
then make assigning a CSS class part of the requirement to using the
Component.

Instead of putting a long template string in our TypeScript file, instead we’re going
to move the template to a separate HTML file and use a templateUrl to load it. We’ll
talk about the template in a minute.

ProductRowComponent template

Now let’s take a look at the template:

code/how-angular-works/inventory-app/src/app/product-row/product-row.component.html
1 <product-image [product]="product"></product-image>

2 <div class="content">

3 <div class="header">{{ product.name }}</div>

4 <div class="meta">

5 <div class="product-sku">SKU #{{ product.sku }}</div>

6 </div>

7 <div class="description">

8 <product-department [product]="product"></product-department>

9 </div>

10 </div>

11 <price-display [price]="product.price"></price-display>

Our template doesn’t have anything conceptually new.

In the first line we use our product-image directive and we pass our product to
the product input of the ProductImageComponent. We use the product-department

directive in the same way.

We use the price-display directive slightly differently in that we pass the prod-

uct.price, instead of the product directly.

The rest of the template is standard HTML elements with custom CSS classes and
some template bindings.

Now let’s talk about the three components we used in this template. They’re
relatively short.

How Angular Works 128

The ProductImageComponent Component

In the ProductImageComponent the template is only one line, so we can put it inline:

code/how-angular-works/inventory-app/src/app/product-image/product-image.component.ts

8 /**

9 * @ProductImage: A component to show a single Product's image

10 */

11 @Component({

12 selector: 'product-image',

13 template: `

14

15 `

16 })

17 export class ProductImageComponent {

18 @Input() product: Product;

19 @HostBinding('attr.class') cssClass = 'ui small image';

20 }

The one thing to note here is in the img tag, notice how we use the [src] input to
img.

By using the [src] attribute, we’re telling Angular that we want to use the [src]

input on this img tag. Angular will then replace the value of the src attribute once
the expression is resolved.

We could also have written this tag this way:

Both styles do essentially the same thing, so feel free to pick the style that works best
for your team.

The PriceDisplayComponent Component

Next, let’s look at PriceDisplayComponent:

How Angular Works 129

code/how-angular-works/inventory-app/src/app/price-display/price-display.component.ts

1 import {

2 Component,

3 Input

4 } from '@angular/core';

5

6 /**

7 * @PriceDisplay: A component to show the price of a

8 * Product

9 */

10 @Component({

11 selector: 'price-display',

12 template: `

13 <div class="price-display">\${{ price }}</div>

14 `

15 })

16 export class PriceDisplayComponent {

17 @Input() price: number;

18 }

One thing to note is that we’re escaping the dollar sign $ because this is a backtick
string and the dollar sign is used for template variables (in ES6).

The ProductDepartmentComponent

Here is our ProductDepartmentComponent:

code/how-angular-works/inventory-app/src/app/product-department/product-depart-
ment.component.ts

1 import {

2 Component,

3 Input

4 } from '@angular/core';

5 import { Product } from '../product.model';

6

7 /**

8 * @ProductDepartment: A component to show the breadcrumbs to a

9 * Product's department

10 */

11 @Component({

How Angular Works 130

12 selector: 'product-department',

13 templateUrl: './product-department.component.html'

14 })

15 export class ProductDepartmentComponent {

16 @Input() product: Product;

17 }

and template:

code/how-angular-works/inventory-app/src/app/product-department/product-depart-
ment.component.html

1 <div class="product-department">

2

3 {{ name }}

4 {{i < (product.department.length-1) ? '>' : ''}}

5

6 </div>

The thing to note about the ProductDepartmentComponent Component is the ngFor

and the span tag.

Our ngFor loops over product.department and assigns each department string to
name. The new part is the second expression that says: let i=index. This is how you
get the iteration number out of ngFor.

In the span tag, we use the i variable to determine if we should show the greater-than
> symbol.

The idea is that given a department, we want to show the department string like:

1 Women > Apparel > Jackets & Vests

The expression {{i < (product.department.length-1) ? '>' : ''}} says that we
only want to use the '>' character if we’re not the last department. On the last
department just show an empty string ''.

This format: test ? valueIfTrue : valueIfFalse is called the ternary
operator.

How Angular Works 131

NgModule and Booting the App

The final thing we have to do is ensure we have a NgModule for this app and boot it
up:

code/how-angular-works/inventory-app/src/app/app.module.ts

1 import { BrowserModule } from "@angular/platform-browser";

2 import { NgModule } from "@angular/core";

3 import { FormsModule } from "@angular/forms";

4

5 import { AppComponent } from "./app.component";

6 import { ProductImageComponent } from "./product-image/product-image.component";

7 import { ProductDepartmentComponent } from "./product-department/product-department.compo\

8 nent";

9 import { PriceDisplayComponent } from "./price-display/price-display.component";

10 import { ProductRowComponent } from "./product-row/product-row.component";

11 import { ProductsListComponent } from "./products-list/products-list.component";

12

13 @NgModule({

14 declarations: [

15 AppComponent,

16 ProductImageComponent,

17 ProductDepartmentComponent,

18 PriceDisplayComponent,

19 ProductRowComponent,

20 ProductsListComponent

21],

22 imports: [BrowserModule, FormsModule],

23 providers: [],

24 bootstrap: [AppComponent]

25 })

26 export class AppModule {}

Angular provides a module system that helps organize our code. Unlike AngularJS
1.x, where all directives are essentially globals, in Angular you must specify exactly
which components you’re going to be using in your app.

While it is a bit more configuration to do it this way, it’s a lifesaver for larger apps.

When you create new components in Angular, in order to use them they must be
accessible from the current module. That is, if we want to use the ProductsListCom-

How Angular Works 132

ponent component with the products-list selector in the AppComponent template,
then we need to make sure that the AppComponent’s module either:

1. is in the same module as the ProductsListComponent component or
2. The AppComponent’s module imports the module that contains ProductsList-

Component

Remember every component you write must be declared in one NgModule
before it can be used in a template.

In this case, we’re putting AppComponent, ProductsListComponent, and all the other
components for this app in one module. This is easy and it means they can all “see”
each other.

Notice that we tell NgModule that we want to bootstrap with AppComponent. This
says that AppComponent will be the top-level component.

Because we are writing a browser app, we also put BrowserModule in the imports of
the NgModule.

Booting the app

To bootstrap this app we write this in our main.ts:

code/how-angular-works/inventory-app/src/main.ts

1 import { enableProdMode } from '@angular/core';

2 import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

3

4 import { AppModule } from './app/app.module';

5 import { environment } from './environments/environment';

6

7 if (environment.production) {

8 enableProdMode();

9 }

10

11 platformBrowserDynamic().bootstrapModule(AppModule);

How Angular Works 133

The last line in this file is what boots our AppModule and subsequently boots our
Angular app.

Because this app was written with angular-cli, we can use the ng tool to run the
app by running ng serve.

That said, it can be tricky to understand what’s going on there. When we run our
app with ng serve this is what happens:

• ng serve looks at .angular-cli.json which specifies main.ts as our entry
point (and index.html as our index file)

• main.ts bootstraps AppModule
• AppModule specifies that AppComponent is the top level component
• … and then AppComponent renders the rest of our app!

The Completed Project

To try it out, change into the project directory and type:

npm install

ng serve

Now we have all the pieces we need for the working project!

Here’s what it will look like when we’re done:

How Angular Works 134

Completed Inventory App

Now you can click to select a particular product and have it render a nice purple
outline when selected. If you add new Products in your code, you’ll see them
rendered.

Deploying the App

We can deploy this app in the same way we deployed the app in the first chapter:

ng build --prod

And then push the files in dist to our server!

How Angular Works 135

A Word on Data Architecture

You might be wondering at this point how we would manage the data flow if we
started adding more functionality to this app.

For instance, say we wanted to add a shopping cart view and then we would add
items to our cart. How could we implement this?

The only tools we’ve talked about are emitting output events. When we click add-to-
cart dowe simply bubble up an addedToCart event and handle at the root component?
That feels a bit awkward.

Data architecture is a large topic with many opinions. Thankfully, Angular is flexible
enough to handle a wide variety of data architectures, but that means that you have
to decide for yourself which to use.

In Angular 1, the default option was two-way data binding. Two-way data binding
is super easy to get started: your controllers have data, your forms manipulate that
data directly, and your views show the data.

The problem with two-way data binding is that it often causes cascading effects
throughout your application and makes it really difficult to trace data flow as your
project grows.

Another problem with two-way data binding is that because you’re passing data
down through components it often forces your “data layout tree” to match your “dom
view tree”. In practice, these two things should really be separate.

One way you might handle this scenario would be to create a ShoppingCartService,
which would be a singleton that would hold the list of the current items in the cart.
This service could notify any interested objects when an item in the cart changes.

The idea is easy enough, but in practice there are a lot of details to be worked out.

The recommended way in Angular, and in many modern web frameworks (such as
React), is to adopt a pattern of one-way data binding. That is, your data flows only
down through components. If you need to make changes, you emit events that cause
changes to happen “at the top” which then trickle down.

One-way data binding can seem like it adds some overhead in the beginning but it
saves a lot of complication around change detection and it makes your systems easier

How Angular Works 136

to reason about.

Thankfully there are two major contenders for managing your data architecture:

1. Use an Observables-based architecture like RxJS
2. Use a Flux-based architecture

Later in this book we’ll talk about how to implement a scalable data architecture for
your app. For now, bask in the joy of your new Component-based application!

Built-in Directives
Introduction

Angular provides a number of built-in directives, which are attributes we add to our
HTML elements that give us dynamic behavior. In this chapter, we’re going to cover
each built-in directive and show you examples of how to use them.

By the end of this chapter you’ll be able to use the basic built-in directives that
Angular offers.

How To Use This Chapter

Instead of building an app step-by-step, this chapter is a tour of the built-
in directives in Angular. Since we’re early in the book, we won’t explain
every detail, but we will provide plenty of example code.

Remember: at any time you can reference the sample code for this chapter
to get the complete context.

If you’d like to run the examples in this chapter then see the folder
code/built-in-directives and run:

1 npm install

2 npm start

And then open http://localhost:4200⁴¹ in your browser.

NgIf

The ngIf directive is used when you want to display or hide an element based on a
condition. The condition is determined by the result of the expression that you pass
into the directive.

⁴¹http://localhost:4200

http://localhost:4200/
http://localhost:4200/

Built-in Directives 138

If the result of the expression returns a false value, the element will be removed from
the DOM.

Some examples are:

<div *ngIf="false"></div> <!-- never displayed -->

<div *ngIf="a > b"></div> <!-- displayed if a is more than b -->

<div *ngIf="str == 'yes'"></div> <!-- displayed if str is the string "yes" -->

<div *ngIf="myFunc()"></div> <!-- displayed if myFunc returns truthy -->

Note for AngularJS 1.x Users

If you’ve used AngularJS 1.x, you may have used the ngIf directive before.
You can think of the Angular version as a direct substitute.

On the other hand, Angular offers no built-in alternative for ng-show. So,
if your goal is to just change the CSS visibility of an element, you should
look into either the ngStyle or the class directives, described later in this
chapter.

NgSwitch

Sometimes you need to render different elements depending on a given condition.

When you run into this situation, you could use ngIf several times like this:

<div class="container">

<div *ngIf="myVar == 'A'">Var is A</div>

<div *ngIf="myVar == 'B'">Var is B</div>

<div *ngIf="myVar != 'A' && myVar != 'B'">Var is something else</div>

</div>

But as you can see, the scenario where myVar is neither A nor B is verbose when all
we’re trying to express is an else.

To illustrate this growth in complexity, say we wanted to handle a new value C.

In order to do that, we’d have to not only add the new element with ngIf, but also
change the last case:

Built-in Directives 139

<div class="container">

<div *ngIf="myVar == 'A'">Var is A</div>

<div *ngIf="myVar == 'B'">Var is B</div>

<div *ngIf="myVar == 'C'">Var is C</div>

<div *ngIf="myVar != 'A' && myVar != 'B' && myVar != 'C'">Var is something else</div>

</div>

For cases like this, Angular introduces the ngSwitch directive.

If you’re familiar with the switch statement then you’ll feel very at home.

The idea behind this directive is the same: allow a single evaluation of an expression,
and then display nested elements based on the value that resulted from that
evaluation.

Once we have the result then we can:

• Describe the known results, using the ngSwitchCase directive
• Handle all the other unknown cases with ngSwitchDefault

Let’s rewrite our example using this new set of directives:

<div class="container" [ngSwitch]="myVar">

<div *ngSwitchCase="'A'">Var is A</div>

<div *ngSwitchCase="'B'">Var is B</div>

<div *ngSwitchDefault>Var is something else</div>

</div>

Then if we want to handle the new value C we insert a single line:

<div class="container" [ngSwitch]="myVar">

<div *ngSwitchCase="'A'">Var is A</div>

<div *ngSwitchCase="'B'">Var is B</div>

<div *ngSwitchCase="'C'">Var is C</div>

<div *ngSwitchDefault>Var is something else</div>

</div>

And we don’t have to touch the default (i.e. fallback) condition.

Having the ngSwitchDefault element is optional. If we leave it out, nothing will be
rendered when myVar fails to match any of the expected values.

You can also declare the same *ngSwitchCase value for different elements, so you’re
not limited to matching only a single time. Here’s an example:

Built-in Directives 140

code/built-in-directives/src/app/ng-switch-example/ng-switch-example.component.html

1 <h4 class="ui horizontal divider header">

2 Current choice is {{ choice }}

3 </h4>

4

5 <div class="ui raised segment">

6 <ul [ngSwitch]="choice">

7 <li *ngSwitchCase="1">First choice

8 <li *ngSwitchCase="2">Second choice

9 <li *ngSwitchCase="3">Third choice

10 <li *ngSwitchCase="4">Fourth choice

11 <li *ngSwitchCase="2">Second choice, again

12 <li *ngSwitchDefault>Default choice

13

14 </div>

15

16 <div style="margin-top: 20px;">

17 <button class="ui primary button" (click)="nextChoice()">

18 Next choice

19 </button>

20 </div>

In the example above when the choice is 2, both the second and fifth lis will be
rendered.

NgStyle

With the NgStyle directive, you can set a given DOM element CSS properties from
Angular expressions.

The simplest way to use this directive is by doing [style.<cssproperty>]="value".
For example:

Built-in Directives 141

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

5 <div [style.background-color]="'yellow'">

6 Uses fixed yellow background

7 </div>

This snippet is using the NgStyle directive to set the background-color CSS property
to the literal string 'yellow'.

Another way to set fixed values is by using the NgStyle attribute and using key value
pairs for each property you want to set, like this:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

13 <div [ngStyle]="{color: 'white', 'background-color': 'blue'}">

14 Uses fixed white text on blue background

15 </div>

Notice that in the ng-style specification we have single quotes around
background-color but not around color. Why is that? Well, the argument
to ng-style is a JavaScript object and color is a valid key, without quotes.
With background-color, however, the dash character isn’t allowed in an
object key, unless it’s a string so we have to quote it.

Generally I’d leave out quoting as much as possible in object keys and only
quote keys when we have to.

Here we are setting both the color and the background-color properties.

But the real power of the NgStyle directive comes with using dynamic values.

In our example, we are defining two input boxes with an apply settings button:

Built-in Directives 142

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

56 <div class="ui input">

57 <input type="text" name="color" value="{{color}}" #colorinput>

58 </div>

59

60 <div class="ui input">

61 <input type="text" name="fontSize" value="{{fontSize}}" #fontinput>

62 </div>

63

64 <button class="ui primary button" (click)="apply(colorinput.value, fontinput.value)">

65 Apply settings

66 </button>

And then using their values to set the CSS properties for three elements.

On the first one, we’re setting the font size based on the input value:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

21 <div>

22

23 red text

24

25 </div>

It’s important to note that we have to specify units where appropriate. For instance,
it isn’t valid CSS to set a font-size of 12 - we have to specify a unit such as 12px
or 1.2em. Angular provides a handy syntax for specifying units: here we used the
notation [style.font-size.px].

The .px suffix indicates that we’re setting the font-size property value in pixels.
You could easily replace that by [style.font-size.em] to express the font size in
ems or even in percentage using [style.font-size.%].

The other two elements use the #colorinput to set the text and background colors:

Built-in Directives 143

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

33 <h4 class="ui horizontal divider header">

34 ngStyle with object property from variable

35 </h4>

36

37 <div>

38

39 {{ color }} text

40

41 </div>

42

43 <h4 class="ui horizontal divider header">

44 style from variable

45 </h4>

46

47 <div [style.background-color]="color"

48 style="color: white;">

49 {{ color }} background

50 </div>

This way, when we click the Apply settings button, we call a method that sets the
new values:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.ts

32 apply(color: string, fontSize: number): void {

33 this.color = color;

34 this.fontSize = fontSize;

35 }

And with that, both the color and the font size will be applied to the elements using
the NgStyle directive.

NgClass

The NgClass directive, represented by a ngClass attribute in your HTML template,
allows you to dynamically set and change the CSS classes for a given DOM element.

Built-in Directives 144

The first way to use this directive is by passing in an object literal. The object is
expected to have the keys as the class names and the values should be a truthy/falsy
value to indicate whether the class should be applied or not.

Let’s assume we have a CSS class called bordered that adds a dashed black border to
an element:

code/built-in-directives/src/styles.css

8 .bordered {

9 border: 1px dashed black;

10 background-color: #eee; }

Let’s add two div elements: one always having the bordered class (and therefore
always having the border) and another one never having it:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

2 <div [ngClass]="{bordered: false}">This is never bordered</div>

3 <div [ngClass]="{bordered: true}">This is always bordered</div>

As expected, this is how those two divs would be rendered:

Simple class directive usage

Of course, it’s a lot more useful to use the NgClass directive tomake class assignments
dynamic.

To make it dynamic we add a variable as the value for the object value, like this:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

5 <div [ngClass]="{bordered: isBordered}">

6 Using object literal. Border {{ isBordered ? "ON" : "OFF" }}

7 </div>

Alternatively, we can define a classesObj object in our component:

Built-in Directives 145

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.ts

3 @Component({

4 selector: 'app-ng-class-example',

5 templateUrl: './ng-class-example.component.html'

6 })

7 export class NgClassExampleComponent implements OnInit {

8 isBordered: boolean;

9 classesObj: Object;

10 classList: string[];

11

12 constructor() {

13 }

14

15 ngOnInit() {

16 this.isBordered = true;

17 this.classList = ['blue', 'round'];

18 this.toggleBorder();

19 }

20

21 toggleBorder(): void {

22 this.isBordered = !this.isBordered;

23 this.classesObj = {

24 bordered: this.isBordered

25 };

26 }

And use the object directly:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

9 <div [ngClass]="classesObj">

10 Using object var. Border {{ classesObj.bordered ? "ON" : "OFF" }}

11 </div>

Again, be careful when you have class names that contains dashes, like
bordered-box. JavaScript requires that object-literal keys with dashes be
quoted like a string, as in:

<div [ngClass]="{'bordered-box': false}">...</div>

Built-in Directives 146

We can also use a list of class names to specify which class names should be added
to the element. For that, we can either pass in an array literal:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

31 <div class="base" [ngClass]="['blue', 'round']">

32 This will always have a blue background and

33 round corners

34 </div>

Or assign an array of values to a property in our component:

this.classList = ['blue', 'round'];

And pass it in:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

36 <div class="base" [ngClass]="classList">

37 This is {{ classList.indexOf('blue') > -1 ? "" : "NOT" }} blue

38 and {{ classList.indexOf('round') > -1 ? "" : "NOT" }} round

39 </div>

In this last example, the [ngClass] assignment works alongside existing values
assigned by the HTML class attribute.

The resulting classes added to the element will always be the set of the classes
provided by usual class HTML attribute and the result of the evaluation of the
[class] directive.

In this example:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

31 <div class="base" [ngClass]="['blue', 'round']">

32 This will always have a blue background and

33 round corners

34 </div>

Built-in Directives 147

The element will have all three classes: base from the classHTML attribute and also
blue and round from the [class] assignment:

Classes from both the attribute and directive

NgFor

The role of this directive is to repeat a given DOM element (or a collection of DOM
elements) and pass an element of the array on each iteration.

The syntax is *ngFor="let item of items".

• The let item syntax specifies a (template) variable that’s receiving each
element of the items array;

• The items is the collection of items from your controller.

To illustrate, we can take a look at the code example. We declare an array of cities
on our component controller:

this.cities = ['Miami', 'Sao Paulo', 'New York'];

And then, in our template we can have the following HTML snippet:

Built-in Directives 148

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

1 <h4 class="ui horizontal divider header">

2 Simple list of strings

3 </h4>

4

5 <div class="ui list" *ngFor="let c of cities">

6 <div class="item">{{ c }}</div>

7 </div>

And it will render each city inside the div as you would expect:

Result of the ngFor directive usage

We can also iterate through an array of objects like these:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.ts

17 this.people = [

18 { name: 'Anderson', age: 35, city: 'Sao Paulo' },

19 { name: 'John', age: 12, city: 'Miami' },

20 { name: 'Peter', age: 22, city: 'New York' }

21];

And then render a table based on each row of data:

Built-in Directives 149

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

9 <h4 class="ui horizontal divider header">

10 List of objects

11 </h4>

12

13 <table class="ui celled table">

14 <thead>

15 <tr>

16 <th>Name</th>

17 <th>Age</th>

18 <th>City</th>

19 </tr>

20 </thead>

21 <tr *ngFor="let p of people">

22 <td>{{ p.name }}</td>

23 <td>{{ p.age }}</td>

24 <td>{{ p.city }}</td>

25 </tr>

26 </table>

Getting the following result:

Rendering array of objects

We can also work with nested arrays. If we wanted to have the same table as above,
broken down by city, we could easily declare a new array of objects:

Built-in Directives 150

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.ts
22 this.peopleByCity = [

23 {

24 city: 'Miami',

25 people: [

26 { name: 'John', age: 12 },

27 { name: 'Angel', age: 22 }

28]

29 },

30 {

31 city: 'Sao Paulo',

32 people: [

33 { name: 'Anderson', age: 35 },

34 { name: 'Felipe', age: 36 }

35]

36 }

37];

38 }

And then we could use NgFor to render one h2 for each city:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html
32 <div *ngFor="let item of peopleByCity">

33 <h2 class="ui header">{{ item.city }}</h2>

And use a nested directive to iterate through the people for a given city:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html
13 <table class="ui celled table">

14 <thead>

15 <tr>

16 <th>Name</th>

17 <th>Age</th>

18 <th>City</th>

19 </tr>

20 </thead>

21 <tr *ngFor="let p of people">

22 <td>{{ p.name }}</td>

23 <td>{{ p.age }}</td>

24 <td>{{ p.city }}</td>

25 </tr>

26 </table>

Built-in Directives 151

Resulting in the following template code:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

28 <h4 class="ui horizontal divider header">

29 Nested data

30 </h4>

31

32 <div *ngFor="let item of peopleByCity">

33 <h2 class="ui header">{{ item.city }}</h2>

34

35 <table class="ui celled table">

36 <thead>

37 <tr>

38 <th>Name</th>

39 <th>Age</th>

40 </tr>

41 </thead>

42 <tr *ngFor="let p of item.people">

43 <td>{{ p.name }}</td>

44 <td>{{ p.age }}</td>

45 </tr>

46 </table>

47 </div>

And it would render one table for each city:

Built-in Directives 152

Rendering nested arrays

Getting an index

There are times that we need the index of each item when we’re iterating an array.

We can get the index by appending the syntax let idx = index to the value of our
ngFor directive, separated by a semi-colon. When we do this, ng2 will assign the
current index into the variable we provide (in this case, the variable idx).

Note that, like JavaScript, the index is always zero based. So the index for
first element is 0, 1 for the second and so on…

Making some changes to our first example, adding the let num = index snippet like
below:

Built-in Directives 153

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

53 <div class="ui list" *ngFor="let c of cities; let num = index">

54 <div class="item">{{ num+1 }} - {{ c }}</div>

55 </div>

It will add the position of the city before the name, like this:

Using an index

NgNonBindable

Weuse ngNonBindablewhenwewant tell Angular not to compile or bind a particular
section of our page.

Let’s say we want to render the literal text {{ content }} in our template. Normally
that text will be bound to the value of the content variable because we’re using the
{{ }} template syntax.

So how can we render the exact text {{ content }}? We use the ngNonBindable

directive.

Let’s say we want to have a div that renders the contents of that content variable
and right after we want to point that out by outputting <- this is what {{ content }}
rendered next to the actual value of the variable.

To do that, here’s the template we’d have to use:

Built-in Directives 154

code/built-in-directives/src/app/ng-non-bindable-example/ng-non-bindable-exam-
ple.component.html

1 <div class='ngNonBindableDemo'>

2 {{ content }}

3

4 ← This is what {{ content }} rendered

5

6 </div>

And with that ngNonBindable attribute, ng2 will not compile within that second
span’s context, leaving it intact:

Result of using ngNonBindable

Conclusion

Angular has only a few core directives, but we can combine these simple pieces
to create dynamic, powerful apps. However, all of these directives help us output
dynamic data, they don’t let us accept user interaction.

In the next chapter we’ll learn how to let our user input data using forms.

Forms in Angular
Forms are Crucial, Forms are Complex

Forms are probably the most crucial aspect of your web application. While we often
get events from clicking on links or moving the mouse, it’s through forms where we
get the majority of our rich data input from users.

On the surface, forms seem straightforward: you make an input tag, the user fills it
out, and hits submit. How hard could it be?

It turns out, forms can be very complex. Here’s a few reasons why:

• Form inputs are meant to modify data, both on the page and the server
• Changes often need to be reflected elsewhere on the page
• Users have a lot of leeway in what they enter, so you need to validate values
• The UI needs to clearly state expectations and errors, if any
• Dependent fields can have complex logic
• We want to be able to test our forms, without relying on DOM selectors

Thankfully, Angular has tools to help with all of these things.

• FormControls encapsulate the inputs in our forms and give us objects to work
with them

• Validators give us the ability to validate inputs, any way we’d like
• Observers let us watch our form for changes and respond accordingly

In this chapter we’re going to walk through building forms, step by step. We’ll start
with some simple forms and build up to more complicated logic.

Forms in Angular 156

FormControls and FormGroups

The two fundamental objects in Angular forms are FormControl and FormGroup.

FormControl

A FormControl represents a single input field - it is the smallest unit of an Angular
form.

FormControls encapsulate the field’s value, and states such as being valid, dirty
(changed), or has errors.

For instance, here’s how we might use a FormControl in TypeScript:

// create a new FormControl with the value "Nate"

let nameControl = new FormControl("Nate");

let name = nameControl.value; // -> Nate

// now we can query this control for certain values:

nameControl.errors // -> StringMap<string, any> of errors

nameControl.dirty // -> false

nameControl.valid // -> true

// etc.

To build up forms we create FormControls (and groups of FormControls) and then
attach metadata and logic to them.

Like many things in Angular, we have a class (FormControl, in this case) that we
attach to the DOM with an attribute (formControl, in this case). For instance, we
might have the following in our form:

<!-- part of some bigger form -->

<input type="text" [formControl]="name" />

This will create a new FormControl object within the context of our form. We’ll talk
more about how that works below.

Forms in Angular 157

FormGroup

Most forms have more than one field, so we need a way to manage multiple
FormControls. If we wanted to check the validity of our form, it’s cumbersome
to iterate over an array of FormControls and check each FormControl for validity.
FormGroups solve this issue by providing a wrapper interface around a collection of
FormControls.

Here’s how you create a FormGroup:

let personInfo = new FormGroup({

firstName: new FormControl("Nate"),

lastName: new FormControl("Murray"),

zip: new FormControl("90210")

})

FormGroup and FormControl have a common ancestor (AbstractControl⁴²). That
means we can check the status or value of personInfo just as easily as a single
FormControl:

personInfo.value; // -> {

// firstName: "Nate",

// lastName: "Murray",

// zip: "90210"

// }

// now we can query this control group for certain values, which have sensible

// values depending on the children FormControl's values:

personInfo.errors // -> StringMap<string, any> of errors

personInfo.dirty // -> false

personInfo.valid // -> true

// etc.

Notice that when we tried to get the value from the FormGroupwe received an object
with key-value pairs. This is a really handy way to get the full set of values from our
form without having to iterate over each FormControl individually.

⁴²https://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html

https://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html
https://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html

Forms in Angular 158

Our First Form

There are lots of moving pieces to create a form, and several important ones we
haven’t touched on. Let’s jump in to a full example and I’ll explain each piece as we
go along.

You can find the full code listing for this section in the code download
under forms/

Here’s a screenshot of the very first form we’re going to build:

Demo Form with Sku: Simple Version

In our imaginary application we’re creating an e-commerce-type site where we’re
listing products for sale. In this app we need to store the product’s SKU, so let’s
create a simple form that takes the SKU as the only input field.

SKU is an abbreviation for “stockkeeping unit”. It’s a term for a unique id
for a product that is going to be tracked in inventory. When we talk about
a SKU, we’re talking about a human-readable item ID.

Our form is super simple: we have a single input for sku (with a label) and a submit
button.

Let’s turn this form into a Component. If you recall, there are three parts to defining
a component:

Forms in Angular 159

• Configure the @Component() decorator
• Create the template
• Implement custom functionality in the component definition class

Let’s take these in turn:

Loading the FormsModule

In order to use the new forms library we need to first make sure we import the forms
library in our NgModule.

There are two ways of using forms in Angular and we’ll talk about them both in
this chapter: using FormsModule or using ReactiveFormsModule. Since we’ll use both,
we’ll import them both into ourmodule. To do this, we do the following in our app.ts
where we bootstrap the app:

1 // app.module.ts

2 import {

3 FormsModule,

4 ReactiveFormsModule

5 } from '@angular/forms';

6

7 // farther down...

8

9 @NgModule({

10 declarations: [

11 AppComponent,

12 DemoFormSkuComponent,

13 // ... our declarations here

14],

15 imports: [

16 BrowserModule,

17 FormsModule, // <-- add this

18 ReactiveFormsModule // <-- and this

19],

20 bootstrap: [AppComponent]

21 })

22 class AppModule {}

This ensures that we’re able to use the form directives in our views. At the risk of
jumping ahead, the FormsModule gives us template driven directives such as:

Forms in Angular 160

• ngModel and
• NgForm

Whereas ReactiveFormsModule gives us reactive driven directives like

• formControl and
• ngFormGroup

… and several more. We haven’t talked about how to use these directives or what
they do, but we will shortly. For now, just know that by importing FormsModule and
ReactiveFormsModule into our NgModule means we can use any of the directives in
that list in our view template or inject any of their respective providers into our
components.

Reactive- vs. template-driven Forms

Angular allows you to define forms in two different ways: “reactive” or “template”
driven. You can see a comparison of two ways here⁴³. Rather than describe how
they’re different, we’re going to show you examples of different ways you can build
forms - then you can decide which is right for your application.

Simple SKU Form: @Component Decorator

First, let’s start by creating what’s called a “template driven” form. Starting with our
component:

⁴³https://angular.io/guide/forms-overview

https://angular.io/guide/forms-overview
https://angular.io/guide/forms-overview

Forms in Angular 161

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-demo-form-sku',

5 templateUrl: './demo-form-sku.component.html',

Here we define a selector of app-demo-form-sku. If you recall, selector tells
Angular what elements this component will bind to. In this case we can use this
component by having a app-demo-form-sku tag like so:

1 <app-demo-form-sku></app-demo-form-sku>

Simple SKU Form: template

Let’s look at our template:

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

1 <div class="ui raised segment">

2 <h2 class="ui header">Demo Form: Sku</h2>

3 <form #f="ngForm"

4 (ngSubmit)="onSubmit(f.value)"

5 class="ui form">

6

7 <div class="field">

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 name="sku" ngModel>

13 </div>

14

15 <button type="submit" class="ui button">Submit</button>

16 </form>

17 </div>

Forms in Angular 162

form & NgForm

Now things get interesting: because we imported FormsModule, that makes NgForm
available to our view. Remember that whenever we make directives available to our
view, they will get attached to any element that matches their selector.

NgForm does something handy butnon-obvious: it includes the form tag in its selector
(instead of requiring you to explicitly add ngForm as an attribute). What this means is
that if you import FormsModule, NgFormwill get automatically attached to any <form>
tags you have in your view. This is really useful but potentially confusing because it
happens behind the scenes.

There are two important pieces of functionality that NgForm gives us:

1. A FormGroup named ngForm

2. A (ngSubmit) output

You can see that we use both of these in the <form> tag in our view:

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

3 <form #f="ngForm"

4 (ngSubmit)="onSubmit(f.value)"

First we have #f="ngForm". The #v="thing" syntax says that we want to create a
local variable for this view.

Here we’re creating an alias to ngForm, for this view, bound to the variable #f. Where
did ngForm come from in the first place? It came from the NgForm directive.

And what type of object is ngForm? It is a FormGroup. That means we can use f as a
FormGroup in our view. And that’s exactly what we do in the (ngSubmit) output.

Forms in Angular 163

Astute readers might notice that I just said above that NgForm is automati-
cally attached to <form> tags (because of the default NgForm selector), which
means we don’t have to add an ngForm attribute to use NgForm. But here
we’re putting ngForm in an attribute (value) tag. Is this a typo?

No, it’s not a typo. If ngForm were the key of the attribute then we would
be telling Angular that we want to use NgForm on this attribute. In this
case, we’re using ngForm as the attribute when we’re assigning a reference.
That is, we’re saying the value of the evaluated expression ngForm should
be assigned to a local template variable f.

ngForm is already on this element and you can think of it as if we are
“exporting” this FormGroup so that we can reference it elsewhere in our
view.

Webind to the ngSubmit action of our form by using the syntax: (ngSubmit)="onSubmit(f.value)".

• (ngSubmit) - comes from NgForm

• onSubmit() - will be implemented in our component definition class (below)
• f.value - f is the FormGroup that we specified above. And .value will return
the key/value pairs of this FormGroup

Put it all together and that line says “when I submit the form, call onSubmit on my
component instance and pass the value of the form as the argument”.

input & NgModel

Our input tag has a few things we should touch on before we talk about NgModel:

Forms in Angular 164

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

3 <form #f="ngForm"

4 (ngSubmit)="onSubmit(f.value)"

5 class="ui form">

6

7 <div class="field">

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 name="sku" ngModel>

13 </div>

• class="ui form" and class="field" - these classes are totally optional. They
come from the CSS framework Semantic UI⁴⁴. I’ve added them in some of our
examples just to give them a nice coat of CSS but they’re not part of Angular.

• The label “for” attribute and the input “id” attribute are to match, as per W3C
standard⁴⁵

• We set a placeholder of “SKU”, which is just a hint to the user for what this
input should say when it is blank

The NgModel directive specifies a selector of ngModel. This means we can attach it
to our input tag by adding this sort of attribute: ngModel="whatever". In this case,
we specify ngModel with no attribute value.

There are a couple of different ways to specify ngModel in your templates and this is
the first. When we use ngModel with no attribute value we are specifying:

1. a one-way data binding
2. we want to create a FormControl on this form with the name sku (because of

the name attribute on the input tag)

NgModel creates a new FormControl that is automatically added to the parent
FormGroup (in this case, on the form) and then binds a DOM element to that new

⁴⁴http://semantic-ui.com/
⁴⁵http://www.w3.org/TR/WCAG20-TECHS/H44.html

http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html
http://www.w3.org/TR/WCAG20-TECHS/H44.html
http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html

Forms in Angular 165

FormControl. That is, it sets up an association between the input tag in our view and
the FormControl and the association is matched by a name, in this case "sku".

NgModel vs. ngModel: what’s the difference? Generally, when we use
PascalCase, like NgModel, we’re specifying the class and referring to the
object as it’s defined in code. The lower case (CamelCase), as in ngModel,
comes from the selector of the directive and it’s only used in the DOM /
template.

It’s also worth pointing out that NgModel and FormControl are separate
objects. NgModel is the directive that you use in your view, whereas
FormControl is the object used for representing the data and validations
in your form.

Sometimes we want to do two-way binding with ngModel like we used to do
in Angular 1. We’ll look at how to do that towards the end of this chapter.

Simple SKU Form: Component Definition Class

Now let’s look at our class definition:

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts
8 export class DemoFormSkuComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 onSubmit(form: any): void {

16 console.log('you submitted value:', form);

17 }

18

19 }

Here our class defines one function: onSubmit. This is the function that is called when
the form is submitted. For now, we’ll just console.log out the value that is passed
in.

Forms in Angular 166

Try it out!

Putting it all together, here’s what our code listing looks like:

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-demo-form-sku',

5 templateUrl: './demo-form-sku.component.html',

6 styles: []

7 })

8 export class DemoFormSkuComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 onSubmit(form: any): void {

16 console.log('you submitted value:', form);

17 }

18

19 }

and the template:

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

1 <div class="ui raised segment">

2 <h2 class="ui header">Demo Form: Sku</h2>

3 <form #f="ngForm"

4 (ngSubmit)="onSubmit(f.value)"

5 class="ui form">

6

7 <div class="field">

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 name="sku" ngModel>

13 </div>

14

Forms in Angular 167

15 <button type="submit" class="ui button">Submit</button>

16 </form>

17 </div>

If we try this out in our browser, here’s what it looks like:

Demo Form with Sku: Simple Version, Submitted

Using FormBuilder

Building our FormControls and FormGroups implicitly using ngForm is convenient, but
doesn’t give us a lot of customization options. A more flexible and common way to
configure forms is to use a FormBuilder.

FormBuilder is an aptly-named helper class that helps us build forms. As you recall,

Forms in Angular 168

forms are made up of FormControls and FormGroups and the FormBuilder helps us
make them (you can think of it as a “factory” object).

Let’s add a FormBuilder to our previous example. Let’s look at:

• how to use the FormBuilder in our component definition class
• how to use our custom FormGroup on a form in the view

Reactive Forms with FormBuilder

For this componentwe’re going to be using the formGroup and formControl directives
which means we need to import the appropriate classes. We start by importing them
like so:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import {

3 FormBuilder,

4 FormGroup

5 } from '@angular/forms';

Using FormBuilder

We inject FormBuilder by creating an argument in the constructor of our compo-
nent class:

What does inject mean? We haven’t talked much about dependency
injection (DI) or how DI relates to the hierarchy tree, so that last sentence
may not make a lot of sense. We talk a lot more about dependency injection
in the Dependency Injection chapter, so go there if you’d like to learn more
about it in depth.

At a high level, Dependency Injection is a way to tell Angular what
dependencies this component needs to function properly.

Forms in Angular 169

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import {

3 FormBuilder,

4 FormGroup

5 } from '@angular/forms';

6

7 @Component({

8 selector: 'app-demo-form-sku-with-builder',

9 templateUrl: './demo-form-sku-with-builder.component.html',

10 styles: []

11 })

12 export class DemoFormSkuWithBuilderComponent implements OnInit {

13 myForm: FormGroup;

14

15 constructor(fb: FormBuilder) {

16 this.myForm = fb.group({

17 'sku': ['ABC123']

18 });

19 }

20

21 ngOnInit() {

22 }

23

24 onSubmit(value: string): void {

25 console.log('you submitted value: ', value);

26 }

27

28 }

During injection an instance of FormBuilder will be created and we assign it to the
fb variable (in the constructor).

There are two main functions we’ll use on FormBuilder:

• control - creates a new FormControl

• group - creates a new FormGroup

Notice that we’ve setup a new instance variable called myForm on this class. (We could
have just as easily called it form, but I want to differentiate between our FormGroup
and the form we had before.)

Forms in Angular 170

myForm is typed to be a FormGroup. We create a FormGroup by calling fb.group().
.group takes an object of key-value pairs that specify the FormControls in this group.

In this case, we’re setting up one control sku, and the value is ["ABC123"] - this says
that the default value of this control is "ABC123". (You’ll notice that is an array. That’s
because we’ll be adding more configuration options there later.)

Now that we have myForm we need to use that in the view (i.e. we need to bind it to
our form element).

Using myForm in the view

We want to change our <form> to use myForm. If you recall, in the last section we
said that ngForm is applied for us automatically when we use FormsModule. We also
mentioned that ngForm creates its own FormGroup. Well, in this case, we don’t want
to use an outside FormGroup. Instead we want to use our instance variable myForm,
which we created with our FormBuilder. How can we do that?

Angular provides another directive that we use when we have an existing Form-

Group: it’s called formGroup and we use it like this:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html

2 <h2 class="ui header">Demo Form: Sku with Builder</h2>

3 <form [formGroup]="myForm"

Here we’re telling Angular that we want to use myForm as the FormGroup for this form.

Remember how earlier we said that when using FormsModule that NgForm
will be automatically applied to a <form> element? There is an exception:
NgForm won’t be applied to a <form> that has formGroup.

If you’re curious, the selector for NgForm is:

form:not([ngNoForm]):not([formGroup]),ngForm,[ngForm]

This means you could have a form that doesn’t get NgForm applied by using
the ngNoForm attribute.

Forms in Angular 171

We also need to change onSubmit to use myForm instead of f, because now it is myForm
that has our configuration and values.

There’s one last thing we need to do to make this work: bind our FormControl to the
input tag.

When we want to bind an existing FormControl to an input we use formControl:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 [formControl]="myForm.controls['sku']">

Here we are instructing the formControl directive to look at myForm.controls and
use the existing sku FormControl for this input.

Try it out!

Here’s what it looks like all together:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import {

3 FormBuilder,

4 FormGroup

5 } from '@angular/forms';

6

7 @Component({

8 selector: 'app-demo-form-sku-with-builder',

9 templateUrl: './demo-form-sku-with-builder.component.html',

10 styles: []

11 })

12 export class DemoFormSkuWithBuilderComponent implements OnInit {

13 myForm: FormGroup;

14

15 constructor(fb: FormBuilder) {

16 this.myForm = fb.group({

17 'sku': ['ABC123']

18 });

Forms in Angular 172

19 }

20

21 ngOnInit() {

22 }

23

24 onSubmit(value: string): void {

25 console.log('you submitted value: ', value);

26 }

27

28 }

and the template:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html
1 <div class="ui raised segment">

2 <h2 class="ui header">Demo Form: Sku with Builder</h2>

3 <form [formGroup]="myForm"

4 (ngSubmit)="onSubmit(myForm.value)"

5 class="ui form">

6

7 <div class="field">

8 <label for="skuInput">SKU</label>

9 <input type="text"

10 id="skuInput"

11 placeholder="SKU"

12 [formControl]="myForm.controls['sku']">

13 </div>

14

15 <button type="submit" class="ui button">Submit</button>

16 </form>

17 </div>

Remember:

To create a new FormGroup and FormControls implicitly use:

• ngForm and
• ngModel

But to bind to an existing FormGroup and FormControls use:

• formGroup and
• formControl

Forms in Angular 173

Adding Validations

Our users aren’t always going to enter data in exactly the right format. If someone
enters data in the wrong format, we want to give them feedback and not allow the
form to be submitted. For this we use validators.

Validators are provided by the Validators module and the simplest validator is
Validators.required which simply says that the designated field is required or else
the FormControl will be considered invalid.

To use validators we need to do two things:

1. Assign a validator to the FormControl object
2. Check the status of the validator in the view and take action accordingly

To assign a validator to a FormControl object we simply pass it as the second
argument to our FormControl constructor:

1 let control = new FormControl('sku', Validators.required);

Or in our case, because we’re using FormBuilder we will use the following syntax:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.ts

18 constructor(fb: FormBuilder) {

19 this.myForm = fb.group({

20 'sku': ['', Validators.required]

21 });

22

23 this.sku = this.myForm.controls['sku'];

24 }

Now we need to use our validation in the view. There are two ways we can access
the validation value in the view:

1. We can explicitly assign the FormControl sku to an instance variable of the class
- which is more verbose, but gives us easy access to the FormControl in the view.

2. We can lookup the FormControl sku from myForm in the view. This requires less
work in the component definition class, but is slightly more verbose in the view.

To make this difference clearer, let’s look at this example both ways:

Forms in Angular 174

Explicitly setting the sku FormControl as an instance
variable

Here’s a screenshot of what our form is going to look like with validations:

Demo Form with Validations

The most flexible way to deal with individual FormControls in your view is to set
each FormControl up as an instance variable in your component definition class.
Here’s how we could setup sku in our class:

Forms in Angular 175

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.ts

14 export class DemoFormWithValidationsExplicitComponent {

15 myForm: FormGroup;

16 sku: AbstractControl;

17

18 constructor(fb: FormBuilder) {

19 this.myForm = fb.group({

20 'sku': ['', Validators.required]

21 });

22

23 this.sku = this.myForm.controls['sku'];

24 }

25

26 onSubmit(value: string): void {

27 console.log('you submitted value: ', value);

28 }

29

30 }

Notice that:

1. We setup sku: AbstractControl at the top of the class and
2. We assign this.sku after we’ve created myForm with the FormBuilder

This is great because it meanswe can reference sku anywhere in our component view.
The downside is that by doing it this way, we’d have to setup an instance variable
for every field in our form. For large forms, this can get pretty verbose.

Now that we have our sku being validated, I want to look at four different ways we
can use it in our view:

1. Checking the validity of our whole form and displaying a message
2. Checking the validity of our individual field and displaying a message
3. Checking the validity of our individual field and coloring the field red if it’s

invalid
4. Checking the validity of our individual field on a particular requirement and

displaying a message

Formmessage

We can check the validity of our whole form by looking at myForm.valid:

Forms in Angular 176

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.html

20 <div *ngIf="!myForm.valid"

Remember, myForm is a FormGroup and a FormGroup is valid if all of the children
FormControls are also valid.

Field message

We can also display a message for the specific field if that field’s FormControl is
invalid:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.html

14 [formControl]="sku">

15 <div *ngIf="!sku.valid"

16 class="ui error message">SKU is invalid</div>

17 <div *ngIf="sku.hasError('required')"

Field coloring

I’m using the Semantic UI CSS Framework’s CSS class .error, which means if I add
the class error to the <div class= "field"> it will show the input tag with a red
border.

To do this, we can use the property syntax to set conditional classes:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.html

7 <div class="field"

8 [class.error]="!sku.valid && sku.touched">

Notice here that we have two conditions for setting the .error class: We’re checking
for !sku.valid and sku.touched. The idea here is that we only want to show the
error state if the user has tried editing the form (“touched” it) and it’s now invalid.

To try this out, enter some data into the input tag and then delete the contents of the
field.

Forms in Angular 177

Specific validation

A form field can be invalid for many reasons. We often want to show a different
message depending on the reason for a failed validation.

To look up a specific validation failure we use the hasError method:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.html

17 <div *ngIf="sku.hasError('required')"

18 class="ui error message">SKU is required</div>

Note that hasError is defined on both FormControl and FormGroup. This means you
can pass a second argument of path to lookup a specific field from FormGroup. For
example, we could have written the previous example as:

1 <div *ngIf="myForm.hasError('required', 'sku')"

2 class="error">SKU is required</div>

Putting it together

Here’s the full code listing of our form with validations with the FormControl set as
an instance variable:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.ts

1 import { Component } from '@angular/core';

2 import {

3 FormBuilder,

4 FormGroup,

5 Validators,

6 AbstractControl

7 } from '@angular/forms';

8

9 @Component({

10 selector: 'app-demo-form-with-validations-explicit',

11 templateUrl: './demo-form-with-validations-explicit.component.html',

12 styles: []

13 })

14 export class DemoFormWithValidationsExplicitComponent {

Forms in Angular 178

15 myForm: FormGroup;

16 sku: AbstractControl;

17

18 constructor(fb: FormBuilder) {

19 this.myForm = fb.group({

20 'sku': ['', Validators.required]

21 });

22

23 this.sku = this.myForm.controls['sku'];

24 }

25

26 onSubmit(value: string): void {

27 console.log('you submitted value: ', value);

28 }

29

30 }

And the template:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-
explicit.component.html

1 <div class="ui raised segment">

2 <h2 class="ui header">Demo Form: with validations (explicit)</h2>

3 <form [formGroup]="myForm"

4 (ngSubmit)="onSubmit(myForm.value)"

5 class="ui form"

6 [class.error]="!myForm.valid && myForm.touched">

7

8 <div class="field"

9 [class.error]="!sku.valid && sku.touched">

10 <label for="skuInput">SKU</label>

11 <input type="text"

12 id="skuInput"

13 placeholder="SKU"

14 [formControl]="sku">

15 <div *ngIf="!sku.valid"

16 class="ui error message">SKU is invalid</div>

17 <div *ngIf="sku.hasError('required')"

18 class="ui error message">SKU is required</div>

19 </div>

20

21 <div *ngIf="!myForm.valid"

22 class="ui error message">Form is invalid</div>

23

Forms in Angular 179

24 <button type="submit" class="ui button">Submit</button>

25 </form>

26 </div>

Removing the sku instance variable

In the example above we set sku: AbstractControl as an instance variable. We often
won’t want to create an instance variable for each AbstractControl, so how would
we reference this FormControl in our view without an instance variable?

Instead we can use the myForm.controls property as in:

code/forms/src/app/demo-form-with-validations-shorthand/demo-form-with-validations-
shorthand.component.html

10 <label for="skuInput">SKU</label>

11 <input type="text"

12 id="skuInput"

13 placeholder="SKU"

14 [formControl]="myForm.controls['sku']">

15 <div *ngIf="!myForm.controls['sku'].valid"

16 class="ui error message">SKU is invalid</div>

17 <div *ngIf="myForm.controls['sku'].hasError('required')"

In this way we can access the sku control without being forced to explicitly add it as
an instance variable on the component class.

We used bracket-notation, e.g. myForm.controls['sku']. We could also
use the dot-notation, e.g myForm.controls.sku. In general, be aware that
TypeScript may give a warning if you use the dot-notation and the object
is not properly typed (but that is not a problem here).

Custom Validations

We often are going to want to write our own custom validations. Let’s take a look at
how to do that.

To see how validators are implemented, let’s look at Validators.required from the
Angular core source:

Forms in Angular 180

1 export class Validators {

2 static required(c: FormControl): StringMap<string, boolean> {

3 return isBlank(c.value) || c.value == "" ? {"required": true} : null;

4 }

A validator: - Takes a FormControl as its input and - Returns a StringMap<string,

boolean> where the key is “error code” and the value is true if it fails

Writing the Validator

Let’s say we have specific requirements for our sku. For example, say our sku needs
to begin with 123. We could write a validator like so:

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-
validation.component.ts

18 function skuValidator(control: FormControl): { [s: string]: boolean } {

19 if (!control.value.match(/^123/)) {

20 return {invalidSku: true};

21 }

22 }

This validator will return an error code invalidSku if the input (the control.value)
does not begin with 123.

Assigning the Validator to the FormControl

Now we need to add the validator to our FormControl. However, there’s one small
problem: we already have a validator on sku. How can we add multiple validators to
a single field?

For that, we use Validators.compose:

Forms in Angular 181

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-
validation.component.ts

33 constructor(fb: FormBuilder) {

34 this.myForm = fb.group({

35 'sku': ['', Validators.compose([

36 Validators.required, skuValidator])]

37 });

Validators.compose wraps our two validators and lets us assign them both to the
FormControl. The FormControl is not valid unless both validations are valid.

Now we can use our new validator in the view:

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-
validation.component.html

19 <div *ngIf="sku.hasError('invalidSku')"

20 class="ui error message">SKU must begin with 123</div>

Note that in this section, I’m using “explicit” notation of adding an instance
variable for each FormControl. That means that in the view in this section,
sku refers to a FormControl.

If you run the sample code, one neat thing you’ll notice is that if you type something
in to the field, the required validation will be fulfilled, but the invalidSku validation
may not. This is great - it means we can partially-validate our fields and show the
appropriate messages.

Watching For Changes

So far we’ve only extracted the value from our form by calling onSubmit when the
form is submitted. But often we want to watch for any value changes on a control.

Both FormGroup and FormControl have an EventEmitter that we can use to observe
changes.

Forms in Angular 182

EventEmitter is anObservable, which means it conforms to a defined spec-
ification for watching for changes. If you’re interested in the Observable
spec, you can find it here⁴⁶

To watch for changes on a control we:

1. get access to the EventEmitter by calling control.valueChanges. Then we
2. add an observer using the .subscribe method

Here’s an example:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.ts

21 constructor(fb: FormBuilder) {

22 this.myForm = fb.group({

23 'sku': ['', Validators.required]

24 });

25

26 this.sku = this.myForm.controls['sku'];

27

28 this.sku.valueChanges.subscribe(

29 (value: string) => {

30 console.log('sku changed to:', value);

31 }

32);

33

34 this.myForm.valueChanges.subscribe(

35 (form: any) => {

36 console.log('form changed to:', form);

37 }

38);

39

40 }

Here we’re observing two separate events: changes on the sku field and changes on
the form as a whole.

The observable that we pass in is an object with a single key: next (there are other
keys you can pass in, but we’re not going to worry about those now). next is the
function we want to call with the new value whenever the value changes.

⁴⁶https://github.com/jhusain/observable-spec

https://github.com/jhusain/observable-spec
https://github.com/jhusain/observable-spec

Forms in Angular 183

If we type ‘kj’ into the text box we will see in our console:

1 sku changed to: k

2 form changed to: Object {sku: "k"}

3 sku changed to: kj

4 form changed to: Object {sku: "kj"}

As you can see each keystroke causes the control to change, so our observable is
triggered. When we observe the individual FormControl we receive a value (e.g. kj),
but when we observe the whole form, we get an object of key-value pairs (e.g. {sku:
"kj"}).

ngModel

NgModel is a special directive: it binds a model to a form. ngModel is special in that it
mimics two-way data binding.

Two-way data binding is almost always more complicated and difficult to reason
about vs. one-way data binding. Angular is built to generally have data flow one-
way: top-down. However, when it comes to forms, there are times where it is easier
to opt-in to a two-way bind.

Just because you’ve used ng-model in Angular 1 in the past, don’t rush to
use ngModel right away. There are good reasons to avoid two-way data
binding⁴⁷. Of course, ngModel can be really handy, but know that we don’t
necessarily rely on two-way data binding as much as we did in Angular 1.

Let’s change our form a little bit and say we want to input productName. We’re going
to use ngModel to keep the component instance variable in sync with the view.

First, here’s our component definition class:

⁴⁷https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2

https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2
https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2
https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2

Forms in Angular 184

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.ts

10 export class DemoFormNgModelComponent {

11 productName: string;

12

13 constructor() {

14 this.productName = "ng-book: The Complete Guide to Angular"

15 }

16

17 onSubmit(value: string): void {

18 console.log('you submitted value: ', value);

19 }

20 }

Notice that we’re simply storing productName: string as an instance variable.

Next, let’s use ngModel on our input tag:

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.html

13 <label for="productNameInput">Product Name</label>

14 <input type="text"

15 id="productNameInput"

16 placeholder="Product Name"

17 name="productName"

18 [(ngModel)]="productName">

Now notice something - the syntax for ngModel is funny: we are using both brackets
and parentheses around the ngModel attribute! The idea this is intended to invoke is
that we’re using both the input [] brackets and the output () parentheses. It’s an
indication of the two-way bind.

Last, let’s display our productName value in the view:

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.html

4 <div class="ui info message">

5 The product name is: {{productName}}

6 </div>

Here’s what it looks like:

Forms in Angular 185

Demo Form with ngModel

Easy!

Wrapping Up

Forms have a lot of moving pieces, but Angular makes it fairly straightforward. Once
you get a handle on how to use FormGroups, FormControls, and Validations, it’s
pretty easy going from there!

Dependency Injection
As our programs grow in size, parts of the app need to communicate with other
modules. When module A requires module B to run, we say that B is a dependency of
A.

One of the most common ways to get access to dependencies is to simply import a
file. For instance, in this hypothetical module we might do the following:

// in A.ts

import { B } from "B"; // a dependency!

B.foo(); // using B

Inmany cases, simply importing code is sufficient, but other timeswe need to provide
dependencies in a more sophisticated way. For instance, we may want to:

• substitute out the implementation of B for MockB during testing
• share a single instance of the B class across our whole app (e.g. the Singleton
pattern)

• create a new instance of the B class every time it is used (e.g. the Factory pattern)

Dependency Injection can solve these problems.

Dependency Injection (DI) is a system to make parts of our program accessible to
other parts of the program - and we can configure how that happens.

One way to think about “the injector” is as a replacement for the new

operator. That is, instead of using the language-provided new operator,
Dependency Injection let’s us configure how objects are created.

The term Dependency Injection is used to describe both a design pattern (used in
many different frameworks) and also the specific implementation of DI that is built-
in to Angular.

Dependency Injection 187

Themajor benefit of usingDependency Injection is that the client component needn’t
be aware of how to create the dependencies. All the client component needs to
know is how to interact with those dependencies. This is all very abstract, so let’s
dive in to some code.

How to use this chapter

This chapter is a tour of Angular DI system and concepts. You can find the
code for this chapter in code/dependency-injection.

While reading this chapter, run the demo project by changing into the
project directory and running:

npm install npm start

As a preview, to get Dependency Injection to work involves configuration
in your NgModules. It can feel a bit confusing at first to figure out “where”
things are coming from.

The example code has full, runnable examples with all of the context. So
if you feel lost, we’d encourage you to checkout the sample code alongside
reading this chapter.

Injections Example: PriceService

Let’s imagine we’re building a store that has Products and we need to calculate the
final price of that product after sales tax. In order to calculate the full price for this
product, we use a PriceService that takes as input:

• the base price of the Product and
• the state we’re selling it to.

and then returns the final price of the Product, plus tax:

Dependency Injection 188

code/dependency-injection/src/app/price-service-demo/price.service.1.ts

1 export class PriceService {

2 constructor() { }

3

4 calculateTotalPrice(basePrice: number, state: string) {

5 // e.g. Imgine that in our "real" application we're

6 // accessing a real database of state sales tax amounts

7 const tax = Math.random();

8

9 return basePrice + tax;

10 }

11

12 }

In this service, the calculateTotalPrice function will take the basePrice of a
product and the state and return the total price of product.

Say we want to use this service on our Product model. Here’s how it could look
without dependency injection:

code/dependency-injection/src/app/price-service-demo/product.model.1.ts

1 import { PriceService } from './price.service';

2

3 export class Product {

4 service: PriceService;

5 basePrice: number;

6

7 constructor(basePrice: number) {

8 this.service = new PriceService(); // <-- create directly ("hardcoded")

9 this.basePrice = basePrice;

10 }

11

12 totalPrice(state: string) {

13 return this.service.calculateTotalPrice(this.basePrice, state);

14 }

15 }

Now imagine we need to write a test for this Product class. We could write a test like
this:

Dependency Injection 189

1 import { Product } from './product';

2

3 describe('Product', () => {

4

5 let product;

6

7 beforeEach(() => {

8 product = new Product(11);

9 });

10

11 describe('price', () => {

12 it('is calculated based on the basePrice and the state', () => {

13 expect(product.totalPrice('FL')).toBe(11.66); // <-- hmmm

14 });

15 })

16

17 });

The problem with this test is that we don’t actually know what the exact value for
tax in Florida ('FL') is going to be. Even if we implemented the PriceService the
‘real’ way by calling an API or calling a database, we have the problem that:

• The API needs to be available (or the database needs to be running) and
• We need to know the exact Florida tax at the time we write the test.

What should we do if we want to test the price method of the Product without
relying on this external resource? In this case we often mock the PriceService. For
example, if we know the interface of a PriceService, we could write a MockPrice-

Service which will always give us a predictable calculation (and not be reliant on a
database or API).

Here’s the interface for IPriceService:

code/dependency-injection/src/app/price-service-demo/price-service.interface.ts
1 export interface IPriceService {

2 calculateTotalPrice(basePrice: number, state: string): number;

3 }

This interface defines just one function: calculateTotalPrice. Now we can write
a MockPriceService that conforms to this interface, which we will use only for our
tests:

Dependency Injection 190

code/dependency-injection/src/app/price-service-demo/price.service.mock.ts

1 import { IPriceService } from './price-service.interface';

2

3 export class MockPriceService implements IPriceService {

4 calculateTotalPrice(basePrice: number, state: string) {

5 if (state === 'FL') {

6 return basePrice + 0.66; // it's always 66 cents!

7 }

8

9 return basePrice;

10 }

11 }

Now, just because we’ve written a MockPriceService doesn’t mean our Productwill
use it. In order to use this service, we need to modify our Product class:

code/dependency-injection/src/app/price-service-demo/product.model.ts

1 import { IPriceService } from './price-service.interface';

2

3 export class Product {

4 service: IPriceService;

5 basePrice: number;

6

7 constructor(service: IPriceService, basePrice: number) {

8 this.service = service; // <-- passed in as an argument!

9 this.basePrice = basePrice;

10 }

11

12 totalPrice(state: string) {

13 return this.service.calculateTotalPrice(this.basePrice, state);

14 }

15 }

Now, when creating a Product the client using the Product class becomes respon-
sible for deciding which concrete implementation of the PriceService is going
to be given to the new instance.

And with this change, we can tweak our test slightly and get rid of the dependency
on the unpredictable PriceService:

Dependency Injection 191

code/dependency-injection/src/app/price-service-demo/product.spec.ts

1 import { Product } from './product.model';

2 import { MockPriceService } from './price.service.mock';

3

4 describe('Product', () => {

5 let product;

6

7 beforeEach(() => {

8 const service = new MockPriceService();

9 product = new Product(service, 11.00);

10 });

11

12 describe('price', () => {

13 it('is calculated based on the basePrice and the state', () => {

14 expect(product.totalPrice('FL')).toBe(11.66);

15 });

16 });

17 });

We also get the bonus of having confidence that we’re testing the Product class
in isolation. That is, we’re making sure that our class works with a predictable
dependency.

While the predictability is nice, it’s a bit laborious to pass a concrete implementation
of a service every time we want a new Product. Thankfully, Angular’s DI library
helps us deal with that problem, too. More on that below.

WithinAngular’s DI system, instead of directly importing and creating a new instance
of a class, instead we will:

• Register the “dependency” with Angular
• Describe how the dependency will be injected
• Inject the dependency

One benefit of this model is that the dependency implementation can be swapped at
run-time (as in our mocking example above). But another significant benefit is that
we can configure how the dependency is created.

That is, often in the case of program-wide services, we may want to have only one
instance - that is, a Singleton. With DI we’re able to configure Singletons easily.

Dependency Injection 192

A third use-case for DI is for configuration or environment-specific variables. For
instance, we might define a “constant” API_URL, but then inject a different value in
production vs. development.

Let’s learn how to create our own services and the different ways of injecting them.

Dependency Injection Parts

To register a dependency we have to bind it to something that will identify that
dependency. This identification is called the dependency token. For instance, if we
want to register the URL of an API, we can use the string API_URL as the token.
Similarly, if we’re registering a class, we can use the class itself as its token as we’ll
see below.

Dependency injection in Angular has three pieces:

• the Provider (also often referred to as a binding) maps a token (that can be
a string or a class) to a list of dependencies. It tells Angular how to create an
object, given a token.

• the Injector that holds a set of bindings and is responsible for resolving
dependencies and injecting them when creating objects

• the Dependency that is what’s being injected

We can think of the role of each piece as illustrated below:

Dependency Injection

Dependency Injection 193

A way of thinking about this is that when we configure DI we specifywhat is being
injected and how it will be resolved.

Playing with an Injector

Above with our Product and PriceService we manually created the PriceService
using the new operator. This mimics what Angular itself does.

Angular uses an injector to resolve a dependency and create the instance. This
is done for us behind the scenes, but as an exercise, it’s useful to explore what’s
happening. It can be enlightening to use the injector manually, because we can see
what Angular does for us behind the scenes.

Let’s manually use the injector in our component to resolve and create a service.
(After we’ve resolved a dependency manually, we’ll show the typical, easy way of
injecting dependencies.)

One of the common use-cases for services is to have a ‘global’ Singleton object.
For instance, we might have a UserService which contains the information for the
currently logged in user. Many different components will want to have logic based
on the current user, so this is a good case for a service.

Here’s a basic UserService that stores the user object as a property:

code/dependency-injection/src/app/services/user.service.ts
1 import { Injectable } from '@angular/core';

2

3 @Injectable()

4 export class UserService {

5 user: any;

6

7 setUser(newUser) {

8 this.user = newUser;

9 }

10

11 getUser(): any {

12 return this.user;

13 }

14 }

Say we want to create a toy sign-in form:

Dependency Injection 194

code/dependency-injection/src/app/user-demo/user-demo.component.html

1 <div>

2 <p

3 *ngIf="userName"

4 class="welcome">

5 Welcome: {{ userName }}!

6 </p>

7 <button

8 (click)="signIn()"

9 class="ui button"

10 >Sign In

11 </button>

12 </div>

Above, we click the “Sign In” button to call the signIn() function (which we’ll define
in a moment). If we have a userName, we’ll display a greeting.

Simple Sign In Button

Now let’s implement this functionality in our component by using the injector
directly.

Dependency Injection 195

code/dependency-injection/src/app/user-demo/user-demo.injector.component.ts

1 import {

2 Component,

3 ReflectiveInjector

4 } from '@angular/core';

5

6 import { UserService } from '../services/user.service';

7

8 @Component({

9 selector: 'app-injector-demo',

10 templateUrl: './user-demo.component.html',

11 styleUrls: ['./user-demo.component.css']

12 })

13 export class UserDemoInjectorComponent {

14 userName: string;

15 userService: UserService;

16

17 constructor() {

18 // Create an _injector_ and ask for it to resolve and create a UserService

19 const injector: any = ReflectiveInjector.resolveAndCreate([UserService]);

20

21 // use the injector to **get the instance** of the UserService

22 this.userService = injector.get(UserService);

23 }

24

25 signIn(): void {

26 // when we sign in, set the user

27 // this mimics filling out a login form

28 this.userService.setUser({

29 name: 'Nate Murray'

30 });

31

32 // now **read** the user name from the service

33 this.userName = this.userService.getUser().name;

34 console.log('User name is: ', this.userName);

35 }

36 }

This starts as a basic component: we have a selector, template, and CSS. Note that
we have two properties: userName, which holds the currently logged-in user’s name
and userService, which holds a reference to the UserService.

Dependency Injection 196

In our component’s constructor we are using a static method from ReflectiveIn-

jector called resolveAndCreate. That method is responsible for creating a new
injector. The parameter we pass in is an array with all the injectable things we
want this new injector to know. In our case, we just wanted it to know about the
UserService injectable.

The ReflectiveInjector is a concrete implementation of Injector that
uses reflection to look up the proper parameter types. While there are other
injectors that are possible ReflectiveInjector is the “normal” injector
we’ll be using in most apps.

Signed In

Providing Dependencies with NgModule

While it’s interesting to see how an injector is created directly, that isn’t the typical
way we’d use injections. Instead, what we’d normally do is

• use NgModule to register what we’ll inject – these are called providers and

Dependency Injection 197

• use decorators (generally on a constructor) to specify what we’re injecting

By doing these two steps Angular will manage creating the injector and resolving
the dependencies.

Let’s convert our UserService to be injectable as a singleton across our app. First,
we’re going to add it to the providers key of our NgModule:

code/dependency-injection/src/app/user-demo/user-demo.module.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3

4 // imported here

5 import { UserService } from '../services/user.service';

6

7 @NgModule({

8 imports: [

9 CommonModule

10],

11 providers: [

12 UserService // <-- added right here

13],

14 declarations: []

15 })

16 export class UserDemoModule { }

Now we can inject UserService into our component like this:

code/dependency-injection/src/app/user-demo/user-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 import { UserService } from '../services/user.service';

4

5 @Component({

6 selector: 'app-user-demo',

7 templateUrl: './user-demo.component.html',

8 styleUrls: ['./user-demo.component.css']

9 })

10 export class UserDemoComponent {

11 userName: string;

12 // removed `userService` because of constructor shorthand below

Dependency Injection 198

13

14 // Angular will inject the singleton instance of `UserService` here.

15 // We set it as a property with `private`.

16 constructor(private userService: UserService) {

17 // empty because we don't have to do anything else!

18 }

19

20 // below is the same...

21 signIn(): void {

22 // when we sign in, set the user

23 // this mimics filling out a login form

24 this.userService.setUser({

25 name: 'Nate Murray'

26 });

27

28 // now **read** the user name from the service

29 this.userName = this.userService.getUser().name;

30 console.log('User name is: ', this.userName);

31 }

32 }

Notice in the constructor above that we have made userService: UserService an
argument to the UserDemoComponent. When this component is created on our page
Angular will resolve and inject the UserService singleton. What’s great about
this is that because Angular is managing the instance, we don’t have to worry about
doing it ourselves. Every class that injects the UserService will receive the same
singleton.

Providers are the Key

It’s important to know that when we put the UserService on the constructor of the
UserDemoComponent, Angular knows what to inject (and how) **because we listed
UserService in the providers key of our NgModule.

It does not inject arbitrary classes. Youmust configure an NgModule for DI to work.

We’ve been talking a lot about Singleton services, but we can inject things in lots of
other ways. Let’s take a look.

Dependency Injection 199

Providers

There are several ways we can configure resolving injected dependencies in Angular.
For instance we can:

• Inject a (singleton) instance of a class (as we’ve seen)
• Inject a value
• Call any function and inject the return value of that function

Let’s look into detail at how we create each one:

Using a Class

As we’ve discussed, injecting a singleton instance of a class is probably the most
common type of injection.

When we put the class itself into the list of providers like this:

providers: [UserService];

This tells Angular that we want to provide a singleton instance of UserService

whenever UserService is injected. Because this pattern is so common, the class by
itself is actually shorthand notation for the following, equivalent configuration:

providers: [{ provide: UserService, useClass: UserService }];

What’s interesting to note is that the object configuration with provide takes two
keys. provide is the token that we use to identify the injection and the second
useClass is how and what to inject.

Here we’re mapping the UserService class to the UserService token. In this case,
the name of the class and the token match. This is the common case, but know that
the token and the injected thing aren’t required to have the same name.

As we’ve seen above, in this case the injector will create a singleton behind the
scenes and return the same instance every time we inject it . Of course, the first
time it is injected, the singleton hasn’t been instantiated yet, so when creating
the UserService instance for the first time, the DI system will trigger the class
constructor method.

Dependency Injection 200

Using a Value

Another way we can use DI is to provide a value, much like we might use a global
constant. For instance, we might configure an API Endpoint URL depending on the
environment.

To do this, in our NgModule providers, we use the key useValue:

providers: [{ provide: "API_URL", useValue: "http://my.api.com/v1" }];

Above, for the provide token we’re using a string of API_URL. If we use a string
for the provide value, Angular can’t infer which dependency we’re resolving by the
type. For instance we can’t write:

// doesn't work - anti-example

export class AnalyticsDemoComponent {

constructor(apiUrl: "API_URL") {

// <--- this isn't a type, just a string

// if we put `string` that is ambiguous

}

}

So what can we do? In this case, we’ll use the @Inject() decorator like this:

import { Inject } from "@angular/core";

export class AnalyticsDemoComponent {

constructor(@Inject("API_URL") apiUrl: string) {

// works! do something w/ apiUrl

}

}

Now that we know how to do simple values with useValue and Singleton classes with
useClass, we’re ready to talk about the more advanced case: writing configurable
services using factories.

Dependency Injection 201

Configurable Services

In the case of the UserService, no arguments are required for the constructor. But
what happens if a service’s constructor requires arguments? We can implement this
by using a factory which is a function that can return any object when injected.

For instance, let’s say we’re writing a library for recording user analytics (that is,
keeping a record of events of actions a user took on the page). In this scenario, we
want to have an AnalyticsServicewith a catch: the AnalyticsService should define
the interface for recording events, but not the implementation for handling the
event.

Tracking Analytics on the events

Our user may, for instance, want to record these metrics with Google Analytics or
they may want to use Optimizely, or some other in-house solution. Let’s write an
injectable AnalyticsService which can take an implementation configuration.

Dependency Injection 202

First, a couple of definitions. Let’s define a Metric:

code/dependency-injection/src/app/analytics-demo/analytics-demo.interface.ts

4 export interface Metric {

5 eventName: string;

6 scope: string;

7 }

A Metric will store an eventName and a scope. We could use this for say, when a the
user nate logs-in the eventName could be loggedIn and the scope would be nate.

// just an example

let metric: Metric = {

eventName: "loggedIn",

scope: "nate"

};

This way we could, in theory, count the number of user logins by counting the events
with eventName loggedIn and count the number of times the specific user nate logged
in by counting the loggedIn events with user nate.

We also need to define what an analytics implementation would look like:

code/dependency-injection/src/app/analytics-demo/analytics-demo.interface.ts

12 export interface AnalyticsImplementation {

13 recordEvent(metric: Metric): void;

14 }

Herewe define an AnalyticsImplementation interface to have one function: recordE-
vent which takes a Metric as an argument.

Now let’s define the AnalyticsService:

Dependency Injection 203

code/dependency-injection/src/app/services/analytics.service.ts

1 import { Injectable } from '@angular/core';

2 import {

3 Metric,

4 AnalyticsImplementation

5 } from '../analytics-demo/analytics-demo.interface';

6

7 @Injectable()

8 export class AnalyticsService {

9 constructor(private implementation: AnalyticsImplementation) {

10 }

11

12 record(metric: Metric): void {

13 this.implementation.recordEvent(metric);

14 }

15 }

Above our AnalyticsService defines one method: record which accepts a Metric

and then passes it on to the implementation.

Of course, this AnalyticsService is a bit trivial and in this case, we prob-
ably wouldn’t need the indirection. But this same pattern could be used in
the case where you had a more advanced AnalyticsService. For instance,
we could add middleware or broadcast to several implementations.

Notice how its constructor method takes a phrase as a parameter? If we try to use
the “regular” useClass injection mechanism we would see an error on the browser
like:

Cannot resolve all parameters for AnalyticsService.

This happens because we didn’t provide the injector with the implementation
necessary for the constructor. In order to resolve this problem, we need to configure
the provider to use a factory.

Dependency Injection 204

Using a Factory

So to use our AnalyticsService, we need to:

• create an implementation that conforms to AnalyticsImplementation and
• add it to providers with useFactory

Here’s how:

code/dependency-injection/src/app/analytics-demo/analytics-demo.module.1.ts

1 import { NgModule } from '@angular/core';

2 import { CommonModule } from '@angular/common';

3 import {

4 Metric,

5 AnalyticsImplementation

6 } from './analytics-demo.interface';

7 import { AnalyticsService } from '../services/analytics.service';

8

9 @NgModule({

10 imports: [

11 CommonModule

12],

13 providers: [

14 {

15 // `AnalyticsService` is the _token_ we use to inject

16 // note, the token is the class, but it's just used as an identifier!

17 provide: AnalyticsService,

18

19 // useFactory is a function - whatever is returned from this function

20 // will be injected

21 useFactory() {

22

23 // create an implementation that will log the event

24 const loggingImplementation: AnalyticsImplementation = {

25 recordEvent: (metric: Metric): void => {

26 console.log('The metric is:', metric);

27 }

28 };

29

30 // create our new `AnalyticsService` with the implementation

31 return new AnalyticsService(loggingImplementation);

32 }

Dependency Injection 205

33 }

34],

35 declarations: []

36 })

37 export class AnalyticsDemoModule { }

Here in providers we’re using the syntax:

providers: [

{ provide: AnalyticsService, useFactory: () => ... }

]

useFactory takes a function and whatever this function returns will be injected.

Also note that we provide AnalyticsService. Again, when we use provide this way,
we’re using the class AnalyticsService as the identifying token of what we’re going
to inject. (If you wanted to be confusing, you could use a completely separate class,
or less-confusingly a string.)

In useFactory we’re creating an AnalyticsImplementation object that has one
function: recordEvent. recordEvent is where we could, in theory, configure what
happens when an event is recorded. Again, in a real app this would probably send
an event to Google Analytics or a custom event logging software.

Lastly, we instantiate our AnalyticsService and return it.

Factory Dependencies

Using a factory is the most powerful way to create injectables, because we can do
whatever we want within the factory function. Sometimes our factory function will
have dependencies of it’s own.

Say that we wanted to configure our AnalyticsImplementation to make an HTTP
request to a particular URL. In order to do this we’d need:

• The Angular HttpClient client and
• Our API_URL value

Here’s how we could set that up:

Dependency Injection 206

code/dependency-injection/src/app/analytics-demo/analytics-demo.module.ts

1 import { NgModule } from "@angular/core";

2 import { CommonModule } from "@angular/common";

3 import { Metric, AnalyticsImplementation } from "./analytics-demo.interface";

4 import { AnalyticsService } from "../services/analytics.service";

5

6 // added this ->

7 import { HttpClientModule, HttpClient } from "@angular/common/http";

8

9 @NgModule({

10 imports: [

11 CommonModule,

12 HttpClientModule // <-- added

13],

14 providers: [

15 // add our API_URL provider

16 { provide: "API_URL", useValue: "http://devserver.com" },

17 {

18 provide: AnalyticsService,

19

20 // add our `deps` to specify the factory depencies

21 deps: [HttpClient, "API_URL"],

22

23 // notice we've added arguments here

24 // the order matches the deps order

25 useFactory(http: HttpClient, apiUrl: string) {

26 // create an implementation that will log the event

27 const loggingImplementation: AnalyticsImplementation = {

28 recordEvent: (metric: Metric): void => {

29 console.log("The metric is:", metric);

30 console.log("Sending to: ", apiUrl);

31 // ... You'd send the metric using http here ...

32 }

33 };

34

35 // create our new `AnalyticsService` with the implementation

36 return new AnalyticsService(loggingImplementation);

37 }

38 }

39],

40 declarations: []

41 })

42 export class AnalyticsDemoModule {}

Dependency Injection 207

Here we’re importing the HttpClientModule, both in the ES6 import (which makes
the class constants available) and in our NgModule imports (which makes it available
for dependency injection).

We’ve added an API_URL provider, as we did above. And then in our AnalyticsSer-
vice provider, we’ve added a new key: deps. deps is an array of injection tokens and
these tokens will be resolved and passed as arguments to the factory function.

Dependency Injection in Apps

To review, when writing our apps there are three steps we need to take in order to
perform an injection:

1. Create the dependency (e.g. the service class)
2. Configure the injection (i.e. register the injection with Angular in our NgModule)
3. Declare the dependencies on the receiving component

The first thing we do is create the service class, that is, the class that exposes some
behavior we want to use. This will be called the injectable because it is the thing that
our components will receive via the injection.

Reminder on terminology: a provider provides (creates, instantiates, etc.) the in-
jectable (the thing you want). In Angular when you want to access an injectable you
inject a dependency into a function (often a constructor) and Angular’s dependency
injection framework will locate it and provide it to you.

As we can see, Dependency Injection provides a powerful way to manage dependen-
cies within our app.

More Resources

• Official Angular DI Docs⁴⁸
• Victor Savkin Compare DI in Angular 1 vs. Angular 2⁴⁹

⁴⁸https://angular.io/docs/ts/latest/guide/dependency-injection.html
⁴⁹http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2
https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

HTTP
Introduction

Angular comes with its own HTTP library which we can use to call out to external
APIs.

When we make calls to an external server, we want our user to continue to be able
to interact with the page. That is, we don’t want our page to freeze until the HTTP
request returns from the external server. To achieve this effect, our HTTP requests
are asynchronous.

Dealing with asynchronous code is, historically, more tricky than dealing with
synchronous code. In JavaScript, there are generally three approaches to dealing with
async code:

1. Callbacks
2. Promises
3. Observables

In Angular, the preferred method of dealing with async code is using Observables,
and so that’s what we’ll cover in this chapter.

There’s a whole chapter on RxJS and Observables: In this chapter we’re
going to be using Observables and not explaining themmuch. If you’re just
starting to read this book at this chapter, you should know that there’s a
whole chapter on Observables that goes into RxJS in more detail.

In this chapter we’re going to:

1. show a basic example of HttpClient

HTTP 209

2. create a YouTube search-as-you-type component
3. discuss API details about the HttpClient library

Sample Code The complete code for the examples in this chapter can
be found in the http folder of the sample code. That folder contains a
README.md which gives instructions for building and running the project.

Try running the code while reading the chapter and feel free play around
to get a deeper insight about how it all works.

Using @angular/common/http

HTTP has been split into a separate module in Angular. This means that to use it
you need to import constants from @angular/common/http. For instance, we might
import constants from @angular/common/http like this:

import {

// The NgModule for using @angular/common/http

HttpClientModule,

// the class constants

HttpClient

} from '@angular/common/http';

import from @angular/common/http

In our app.module.ts we’re going to import HttpClientModule which is a conve-
nience collection of modules.

HTTP 210

code/http/src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpClientModule } from '@angular/common/http';

In our NgModule we will add HttpClientModule to the list of imports. The effect
is that we will be able to inject HttpClient (and a few other modules) into our
components.

code/http/src/app/app.module.ts

14 @NgModule({

15 declarations: [

16 AppComponent,

17 SimpleHttpComponent,

18 MoreHttpRequestsComponent,

19 YouTubeSearchComponent,

20 SearchResultComponent,

21 SearchBoxComponent

22],

23 imports: [

24 BrowserModule,

25 FormsModule,

26 HttpClientModule // <-- right here

27],

28 providers: [youTubeSearchInjectables],

29 bootstrap: [AppComponent]

30 })

31 export class AppModule {}

Notice that we have custom components in declarations as well as a
custom provider. We’ll talk about these later in the chapter.

Nowwe can inject the HttpClient service into our components (or anywhere we use
dependency injection).

HTTP 211

class MyFooComponent {

constructor(public http: HttpClient) {

}

makeRequest(): void {

// do something with this.http ...

}

}

A Basic Request

The first thing we’re going to do is make a simple GET request to the jsonplaceholder
API⁵⁰.

What we’re going to do is:

1. Have a button that calls makeRequest
2. makeRequest will call the http library to perform a GET request on our API
3. When the request returns, we’ll update this.data with the results of the data,

which will be rendered in the view.

Here’s a screenshot of our example:

Basic Request

⁵⁰https://jsonplaceholder.typicode.com

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/

HTTP 212

Building the SimpleHttpComponent Component Definition

The first thing we’re going to do is import a fewmodules and then specify a selector
for our @Component:

code/http/src/app/simple-http/simple-http.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3

4 @Component({

5 selector: 'app-simple-http',

6 templateUrl: './simple-http.component.html'

7 })

8 export class SimpleHttpComponent implements OnInit {

9 data: Object;

10 loading: boolean;

11

12 constructor(private http: HttpClient) {}

Building the SimpleHttpComponent template

Next we build our view:

code/http/src/app/simple-http/simple-http.component.html

1 <h2>Basic Request</h2>

2 <button type="button" (click)="makeRequest()">Make Request</button>

3 <div *ngIf="loading">loading...</div>

4 <pre>{{data | json}}</pre>

Our template has three interesting parts:

1. The button
2. The loading indicator
3. The data

HTTP 213

On the buttonwe bind to (click) to call the makeRequest function in our controller,
which we’ll define in a minute.

We want to indicate to the user that our request is loading, so to do that we will show
loading... if the instance variable loading is true, using ngIf.

The data is an Object. A great way to debug objects is to use the json pipe as we do
here. We’ve put this in a pre tag to give us nice, easy to read formatting.

Building the SimpleHttpComponent Controller

We start by defining a new class for our SimpleHttpComponent:

code/http/src/app/simple-http/simple-http.component.ts
8 export class SimpleHttpComponent implements OnInit {

9 data: Object;

10 loading: boolean;

We have two instance variables: data and loading. This will be used for our API
return value and loading indicator respectively.

Next we define our constructor:

code/http/src/app/simple-http/simple-http.component.ts
12 constructor(private http: HttpClient) {}

The constructor body is empty, but we inject one key module: HttpClient.

Remember that when we use the public keyword in public http:

HttpClient TypeScript will assign http to this.http. It’s a shorthand for:

// other instance variables here

http: HttpClient;

constructor(http: HttpClient) {

this.http = http;

}

Now let’s make our first HTTP request by implementing the makeRequest function:

HTTP 214

code/http/src/app/simple-http/simple-http.component.ts
16 makeRequest(): void {

17 this.loading = true;

18 this.http

19 .get('https://jsonplaceholder.typicode.com/posts/1')

20 .subscribe(data => {

21 this.data = data;

22 this.loading = false;

23 });

24 }

When we call makeRequest, the first thing we do is set this.loading = true. This
will turn on the loading indicator in our view.

To make an HTTP request is straightforward: we call this.http.get and pass the
URL to which we want to make a GET request.

http.get returns an Observable. We can subscribe to changes (akin to using then

from a Promise) using subscribe.

code/http/src/app/simple-http/simple-http.component.ts
18 this.http

19 .get('https://jsonplaceholder.typicode.com/posts/1')

20 .subscribe(data => {

When our http.request returns (from the server) the stream will emit a Response

object. We extract the body of the response as an Object by using json and then we
set this.data to that Object.

Since we have a response, we’re not loading anymore so we set this.loading =

false

.subscribe can also handle failures and stream completion by passing a
function to the second and third arguments respectively. In a production
app it would be a good idea to handle those cases, too. That is, this.loading
should also be set to false if the request fails (i.e. the stream emits an error).

Full SimpleHttpComponent

Here’s what our SimpleHttpComponent looks like altogether:

HTTP 215

code/http/src/app/simple-http/simple-http.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import { HttpClient } from '@angular/common/http';

3

4 @Component({

5 selector: 'app-simple-http',

6 templateUrl: './simple-http.component.html'

7 })

8 export class SimpleHttpComponent implements OnInit {

9 data: Object;

10 loading: boolean;

11

12 constructor(private http: HttpClient) {}

13

14 ngOnInit() {}

15

16 makeRequest(): void {

17 this.loading = true;

18 this.http

19 .get('https://jsonplaceholder.typicode.com/posts/1')

20 .subscribe(data => {

21 this.data = data;

22 this.loading = false;

23 });

24 }

25 }

Writing a YouTubeSearchComponent

The last example was a minimal way to get the data from an API server into your
code. Now let’s try to build a more involved example.

In this section, we’re going to build a way to search YouTube as you type. When the
search returns we’ll show a list of video thumbnail results, along with a description
and link to each video.

Here’s a screenshot of what happens when I search for “cats playing ipads”:

HTTP 216

Can I get my cat to write Angular?

For this example we’re going to write several things:

1. A SearchResult object that will hold the data we want from each result
2. A YouTubeSearchService which will manage the API request to YouTube and

convert the results to a stream of SearchResult[]
3. A SearchBoxComponent which will call out to the YouTube service as the user

types
4. A SearchResultComponent which will render a specific SearchResult
5. A YouTubeSearchComponentwhich will encapsulate our whole YouTube search-

ing app and render the list of results

HTTP 217

Let’s handle each part one at a time.

Patrick Stapleton has an excellent repository named angular2-webpack-
starter⁵¹. This repo has an RxJS example which autocompletes Github
repositories. Some of the ideas in this section are inspired from that
example. It’s a fantastic project with lots of examples and you should check
it out.

Writing a SearchResult

First let’s start with writing a basic SearchResult class. This class is just a convenient
way to store the specific fields we’re interested in from our search results.

code/http/src/app/you-tube-search/search-result.model.ts

1 /**

2 * SearchResult is a data-structure that holds an individual

3 * record from a YouTube video search

4 */

5 export class SearchResult {

6 id: string;

7 title: string;

8 description: string;

9 thumbnailUrl: string;

10 videoUrl: string;

11

12 constructor(obj?: any) {

13 this.id = obj && obj.id || null;

14 this.title = obj && obj.title || null;

15 this.description = obj && obj.description || null;

16 this.thumbnailUrl = obj && obj.thumbnailUrl || null;

17 this.videoUrl = obj && obj.videoUrl ||

18 `https://www.youtube.com/watch?v=${this.id}`;

19 }

20 }

This pattern of taking an obj?: any lets us simulate keyword arguments. The idea
is that we can create a new SearchResult and just pass in an object containing the
keys we want to specify.

⁵¹https://github.com/angular-class/angular2-webpack-starter

https://github.com/angular-class/angular2-webpack-starter
https://github.com/angular-class/angular2-webpack-starter
https://github.com/angular-class/angular2-webpack-starter

HTTP 218

The only thing to point out here is that we’re constructing the videoUrl using a hard-
coded URL format. You’re welcome to change this to a function which takes more
arguments, or use the video id directly in your view to build this URL if you need
to.

Writing the YouTubeSearchService

The API

For this example we’re going to be using the YouTube v3 search API⁵².

In order to use this API you need to have an API key. I’ve included an API
key in the sample code which you can use. However, by the time you read
this, you may find it’s over the rate limits. If that happens, you’ll need to
issue your own key.

To issue your own key see this documentation⁵³. For the sake of simplicity,
I’ve registered a server key, but you should probably use a browser key if
you’re going to put your javascript code online.

We’re going to setup two constants for our YouTubeSearchService mapping to our
API key and the API URL:

let YOUTUBE_API_KEY: string = "XXX_YOUR_KEY_HERE_XXX";

let YOUTUBE_API_URL: string = "https://www.googleapis.com/youtube/v3/search";

Eventually we’re going to want to test our app. One of the things we find when
testing is that we don’t always want to test against production - we often want to
test against staging or a development API.

To help with this environment configuration, one of the things we can do is make
these constants injectable.

Why should we inject these constants instead of just using them in the normal way?
Because if we make them injectable we can

⁵²https://developers.google.com/youtube/v3/docs/search/list
⁵³https://developers.google.com/youtube/registering_an_application#Create_API_Keys

https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/registering_an_application#Create_API_Keys
https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/registering_an_application#Create_API_Keys

HTTP 219

1. have code that injects the right constants for a given environment at deploy
time and

2. replace the injected value easily at test-time

By injecting these values, we have a lot more flexibility about their values down the
line.

In order to make these values injectable, we use the { provide: ... , useValue:

... } syntax like this:

code/http/src/app/you-tube-search/you-tube-search.injectables.ts

1 import {

2 YouTubeSearchService,

3 YOUTUBE_API_KEY,

4 YOUTUBE_API_URL

5 } from './you-tube-search.service';

6

7 export const youTubeSearchInjectables: Array<any> = [

8 {provide: YouTubeSearchService, useClass: YouTubeSearchService},

9 {provide: YOUTUBE_API_KEY, useValue: YOUTUBE_API_KEY},

10 {provide: YOUTUBE_API_URL, useValue: YOUTUBE_API_URL}

11];

Here we’re specifying that we want to bind YOUTUBE_API_KEY “injectably” to the
value of YOUTUBE_API_KEY. (Same for YOUTUBE_API_URL, and we’ll define YouTube-

SearchService in a minute.)

To get a refresher on the different ways to create ‘injectables’, checkout the
chapter on dependency injection

If you recall, to make something available to be injected throughout our application,
we need to put it in providers for our NgModule. Since we’re exporting youTubeSer-

viceInjectables here we can use it in our app.module.ts

HTTP 220

// http/app.ts

import { HttpClientModule } from '@angular/common/http';

import { youTubeServiceInjectables } from "components/YouTubeSearchComponent";

// ...

// further down

// ...

@NgModule({

declarations: [

HttpApp,

// others

],

imports: [BrowserModule, HttpClientModule],

bootstrap: [HttpApp],

providers: [

youTubeServiceInjectables // <--- right here

]

})

class HttpAppModule {}

Nowwe can inject YOUTUBE_API_KEY (from the youTubeServiceInjectables) instead
of using the variable directly.

YouTubeSearchService constructor

We create our YouTubeSearchService by making a service class:

code/http/src/app/you-tube-search/you-tube-search.service.ts

26 /**

27 * YouTubeService connects to the YouTube API

28 * See: * https://developers.google.com/youtube/v3/docs/search/list

29 */

30 @Injectable()

31 export class YouTubeSearchService {

32 constructor(

33 private http: HttpClient,

34 @Inject(YOUTUBE_API_KEY) private apiKey: string,

35 @Inject(YOUTUBE_API_URL) private apiUrl: string

36) {}

HTTP 221

The @Injectable annotation allows us to inject things into this classes
constructor.

In the constructor we inject three things:

1. HttpClient
2. YOUTUBE_API_KEY
3. YOUTUBE_API_URL

Notice that we make instance variables from all three arguments, meaning we can
access them as this.http, this.apiKey, and this.apiUrl respectively.

Notice that we explicitly inject using the @Inject(YOUTUBE_API_KEY) notation.

YouTubeSearchService search

Next let’s implement the search function. search takes a query string and returns an
Observable which will emit a stream of SearchResult[]. That is, each item emitted
is an array of SearchResults.

code/http/src/app/you-tube-search/you-tube-search.service.ts

38 search(query: string): Observable<SearchResult[]> {

39 const params: string = [

40 `q=${query}`,

41 `key=${this.apiKey}`,

42 `part=snippet`,

43 `type=video`,

44 `maxResults=10`

45].join('&');

46 const queryUrl = `${this.apiUrl}?${params}`;

We’re building the queryUrl in a manual way here. We start by simply putting the
query params in the params variable. (You can find the meaning of each of those
values by reading the search API docs⁵⁴.)

Then we build the queryUrl by concatenating the apiUrl and the params.

⁵⁴https://developers.google.com/youtube/v3/docs/search/list

https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list

HTTP 222

Now that we have a queryUrl we can make our request. In this case we are going to
use http.get, although HttpClient can make any kind of request (POST, DELETE,
GET, etc.):

code/http/src/app/you-tube-search/you-tube-search.service.ts

38 search(query: string): Observable<SearchResult[]> {

39 const params: string = [

40 `q=${query}`,

41 `key=${this.apiKey}`,

42 `part=snippet`,

43 `type=video`,

44 `maxResults=10`

45].join('&');

46 const queryUrl = `${this.apiUrl}?${params}`;

47 return this.http.get(queryUrl).map(response => {

48 return <any>response['items'].map(item => {

49 // console.log("raw item", item); // uncomment if you want to debug

50 return new SearchResult({

51 id: item.id.videoId,

52 title: item.snippet.title,

53 description: item.snippet.description,

54 thumbnailUrl: item.snippet.thumbnails.high.url

55 });

56 });

57 });

58 }

Here we take the return value of http.get and use map to get the Response from the
request. From that responsewe extract the body as an object using .json() and then
we iterate over each item and convert it to a SearchResult.

If you’d like to see what the raw item looks like, just uncomment the
console.log and inspect it in your browsers developer console.

HTTP 223

Notice that we’re calling (<any>response.json()).items. What’s going on
here? We’re telling TypeScript that we’re not interested in doing strict type
checking.

When working with a JSON API, we don’t generally have typing defini-
tions for the API responses, and so TypeScript won’t know that the Object
returned even has an items key, so the compiler will complain.

We could call response.json()["items"] and then cast that to an Array

etc., but in this case (and in creating the SearchResult, it’s just cleaner to
use an any type, at the expense of strict type checking

YouTubeSearchService Full Listing

Here’s the full listing of our YouTubeSearchService.

In this chapter we are adding some style using the CSS framework
Bootstrap⁵⁵

code/http/src/app/you-tube-search/you-tube-search.service.ts

26 /**

27 * YouTubeService connects to the YouTube API

28 * See: * https://developers.google.com/youtube/v3/docs/search/list

29 */

30 @Injectable()

31 export class YouTubeSearchService {

32 constructor(

33 private http: HttpClient,

34 @Inject(YOUTUBE_API_KEY) private apiKey: string,

35 @Inject(YOUTUBE_API_URL) private apiUrl: string

36) {}

37

38 search(query: string): Observable<SearchResult[]> {

39 const params: string = [

40 `q=${query}`,

41 `key=${this.apiKey}`,

42 `part=snippet`,

43 `type=video`,

⁵⁵http://getbootstrap.com

http://getbootstrap.com/
http://getbootstrap.com/

HTTP 224

44 `maxResults=10`

45].join('&');

46 const queryUrl = `${this.apiUrl}?${params}`;

47 return this.http.get(queryUrl).map(response => {

48 return <any>response['items'].map(item => {

49 // console.log("raw item", item); // uncomment if you want to debug

50 return new SearchResult({

51 id: item.id.videoId,

52 title: item.snippet.title,

53 description: item.snippet.description,

54 thumbnailUrl: item.snippet.thumbnails.high.url

55 });

56 });

57 });

58 }

59 }

Writing the SearchBoxComponent

The SearchBoxComponent plays a key role in our app: it is the mediator between our
UI and the YouTubeSearchService.

The SearchBoxComponent will :

1. Watch for keyup on an input and submit a search to the YouTubeSearchService
2. Emit a loading event when we’re loading (or not)
3. Emit a results event when we have new results

SearchBoxComponent @Component Definition

Let’s define our SearchBoxComponent @Component:

HTTP 225

code/http/src/app/you-tube-search/search-box.component.ts
22 @Component({

23 selector: 'app-search-box',

24 template: `

25 <input type="text" class="form-control" placeholder="Search" autofocus>

26 `

27 })

28 export class SearchBoxComponent implements OnInit {

29 @Output() loading: EventEmitter<boolean> = new EventEmitter<boolean>();

30 @Output() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

31

32 constructor(private youtube: YouTubeSearchService,

33 private el: ElementRef) {

34 }

The selectorwe’ve seen many times before: this allows us to create a <app-search-
box> tag.

The two @Outputs specify that events will be emitted from this component. That is,
we can use the (output)="callback()" syntax in our view to listen to events on this
component. For example, here’s how we will use the app-search-box tag in our view
later on:

<app-search-box

(loading)="loading = $event"

(results)="updateResults($event)"

></app-search-box>

In this example, when the SearchBoxComponent emits a loading event, we will set
the variable loading in the parent context. Likewise, when the SearchBoxComponent
emits a results event, we will call the updateResults() function, with the value, in
the parent’s context.

In the @Component class we’re specifying the properties of the events with the
names loading and results. In this example, each event will have a corresponding
EventEmitter as an instance variable of the controller class. We’ll implement that in
a few minutes.

For now, remember that @Component is like the public API for our component, so here
we’re just specifying the name of the events, and we’ll worry about implementing
the EventEmitters later.

HTTP 226

SearchBoxComponent template Definition

Our template is straightforward. We have one input tag:

code/http/src/app/you-tube-search/search-box.component.ts

24 template: `

25 <input type="text" class="form-control" placeholder="Search" autofocus>

26 `

SearchBoxComponent Controller Definition

Our SearchBoxComponent controller is a new class:

code/http/src/app/you-tube-search/search-box.component.ts

28 export class SearchBoxComponent implements OnInit {

29 @Output() loading: EventEmitter<boolean> = new EventEmitter<boolean>();

30 @Output() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

We say that this class implements OnInit because we want to use the ngOnInit

lifecycle callback. If a class implements OnInit then the ngOnInit function will be
called after the first change detection check.

ngOnInit is a good place to do initialization (vs. the constructor) because inputs set
on a component are not available in the constructor.

Here we create the EventEmitters for both loading and the results. loading will
emit a boolean when this search is loading and results will emit an array of
SearchResults when the search is finished.

SearchBoxComponent Controller Definition constructor

Let’s talk about the SearchBoxComponent constructor:

HTTP 227

code/http/src/app/you-tube-search/search-box.component.ts

32 constructor(private youtube: YouTubeSearchService,

33 private el: ElementRef) {

34 }

In our constructor we inject :

1. Our YouTubeSearchService and
2. The element el that this component is attached to. el is an object of type

ElementRef, which is an Angular wrapper around a native element.

We set both injections as instance variables.

SearchBoxComponent Controller Definition ngOnInit

On this input box we want to watch for keyup events. The thing is, if we simply did
a search after every keyup that wouldn’t work very well. There are three things we
can do to improve the user experience:

1. Filter out any empty or short queries
2. “debounce” the input, that is, don’t search on every character but only after the

user has stopped typing after a short amount of time
3. discard any old searches, if the user has made a new search

We could manually bind to keyup and call a function on each keyup event and then
implement filtering and debouncing from there. However, there is a better way: turn
the keyup events into an observable stream.

RxJS provides away to listen to events on an element using Rx.Observable.fromEvent.
We can use it like so:

HTTP 228

code/http/src/app/you-tube-search/search-box.component.ts

36 ngOnInit(): void {

37 // convert the `keyup` event into an observable stream

38 Observable.fromEvent(this.el.nativeElement, 'keyup')

Notice that in fromEvent:

• the first argument is this.el.nativeElement (the native DOM element this
component is attached to)

• the second argument is the string 'keyup', which is the name of the event we
want to turn into a stream

We can now perform some RxJS magic over this stream to turn it into SearchResults.
Let’s walk through step by step.

Given the stream of keyup events we can chain on more methods. In the next few
paragraphs we’re going to chain several functions on to our stream which will
transform the stream. Then at the end we’ll show the whole example together.

First, let’s extract the value of the input tag:

.map((e: any) => e.target.value) // extract the value of the input

Above says, map over each keyup event, then find the event target (e.target, that is,
our input element) and extract the value of that element. This means our stream is
now a stream of strings.

Next:

.filter((text: string) => text.length > 1)

This filter means the stream will not emit any search strings for which the length
is less than one. You could set this to a higher number if you want to ignore short
searches.

HTTP 229

.debounceTime(250)

debounceTime means we will throttle requests that come in faster than 250ms. That
is, we won’t search on every keystroke, but rather after the user has paused a small
amount.

.do(() => this.loading.emit(true)) // enable loading

Using do on a stream is a way to perform a function mid-stream for each event, but
it does not change anything in the stream. The idea here is that we’ve got our search,
it has enough characters, and we’ve debounced, so now we’re about to search, so we
turn on loading.

this.loading is an EventEmitter. We “turn on” loading by emitting true as
the next event. We emit something on an EventEmitter by calling next. Writing
this.loading.emit(true) means, emit a true event on the loading EventEmitter.
When we listen to the loading event on this component, the $event value will now
be true (we’ll look more closely at using $event below).

.map((query: string) => this.youtube.search(query))

.switch()

We use .map to call perform a search for each query that is emitted. By using switch
we’re, essentially, saying “ignore all search events but the most recent”. That is, if a
new search comes in, we want to use the most recent and discard the rest.

Reactive experts will note that I’m handwaving here. switch has a more
specific technical definition which you can read about in the RxJS docs
here⁵⁶.

For each query that comes in, we’re going to perform a search on our YouTube-

SearchService.

Putting the chain together we have this:

⁵⁶https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

HTTP 230

code/http/src/app/you-tube-search/search-box.component.ts
36 ngOnInit(): void {

37 // convert the `keyup` event into an observable stream

38 Observable.fromEvent(this.el.nativeElement, 'keyup')

39 .map((e: any) => e.target.value) // extract the value of the input

40 .filter((text: string) => text.length > 1) // filter out if empty

41 .debounceTime(250) // only once every 250ms

42 .do(() => this.loading.emit(true)) // enable loading

43 // search, discarding old events if new input comes in

44 .map((query: string) => this.youtube.search(query))

45 .switch()

46 // act on the return of the search

47 .subscribe(

The API of RxJS can be a little intimidating because the API surface area is large. That
said, we’ve implemented a sophisticated event-handling stream in very few lines of
code!

Because we are calling out to our YouTubeSearchService our stream is now a
stream of SearchResult[]. We can subscribe to this stream and perform actions
accordingly.

subscribe takes three arguments: onSuccess, onError, onCompletion.

code/http/src/app/you-tube-search/search-box.component.ts
47 .subscribe(

48 (results: SearchResult[]) => { // on sucesss

49 this.loading.emit(false);

50 this.results.emit(results);

51 },

52 (err: any) => { // on error

53 console.log(err);

54 this.loading.emit(false);

55 },

56 () => { // on completion

57 this.loading.emit(false);

58 }

59);

60 }

The first argument specifies what we want to do when the stream emits a regular
event. Here we emit an event on both of our EventEmitters:

HTTP 231

1. We call this.loading.emit(false), indicating we’ve stopped loading
2. We call this.results.emit(results), which will emit an event containing the

list of results

The second argument specifies what should happen when the stream has an error
event. Here we set this.loading.emit(false) and log out the error.

The third argument specifies what should happen when the stream completes. Here
we also emit that we’re done loading.

SearchBoxComponent: Full Listing

All together, here’s the full listing of our SearchBoxComponent Component:

code/http/src/app/you-tube-search/search-box.component.ts

22 @Component({

23 selector: 'app-search-box',

24 template: `

25 <input type="text" class="form-control" placeholder="Search" autofocus>

26 `

27 })

28 export class SearchBoxComponent implements OnInit {

29 @Output() loading: EventEmitter<boolean> = new EventEmitter<boolean>();

30 @Output() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

31

32 constructor(private youtube: YouTubeSearchService,

33 private el: ElementRef) {

34 }

35

36 ngOnInit(): void {

37 // convert the `keyup` event into an observable stream

38 Observable.fromEvent(this.el.nativeElement, 'keyup')

39 .map((e: any) => e.target.value) // extract the value of the input

40 .filter((text: string) => text.length > 1) // filter out if empty

41 .debounceTime(250) // only once every 250ms

42 .do(() => this.loading.emit(true)) // enable loading

43 // search, discarding old events if new input comes in

44 .map((query: string) => this.youtube.search(query))

45 .switch()

46 // act on the return of the search

47 .subscribe(

48 (results: SearchResult[]) => { // on sucesss

HTTP 232

49 this.loading.emit(false);

50 this.results.emit(results);

51 },

52 (err: any) => { // on error

53 console.log(err);

54 this.loading.emit(false);

55 },

56 () => { // on completion

57 this.loading.emit(false);

58 }

59);

60 }

61 }

Writing SearchResultComponent

Single Search Result Compo-
nent

The SearchBoxComponentwas fairly complicated . Let’s
handle a much easier component now: the SearchRe-

sultComponent. The SearchResultComponent’s job is to
render a single SearchResult.

Given what we’ve already covered there aren’t any
new ideas here, so let’s take it all at once:

code/http/src/app/you-tube-search/search-result.component.ts

1 import {

2 Component,

3 OnInit,

4 Input

5 } from '@angular/core';

6 import { SearchResult } from './search-result.model';

7

8

9 @Component({

10 selector: 'app-search-result',

11 templateUrl: './search-result.component.html'

12 })

13 export class SearchResultComponent implements OnInit {

14 @Input() result: SearchResult;

HTTP 233

15

16 constructor() { }

17

18 ngOnInit() {

19 }

20

21 }

A few things:

The @Component takes a single input result, on which
we will put the SearchResult assigned to this compo-
nent.

The template shows the title, description, and thumb-
nail of the video and then links to the video via a
button.

code/http/src/app/you-tube-search/search-re-
sult.component.html

1 <div class="col-sm-6 col-md-3">

2 <div class="thumbnail">

3

4 <div class="caption">

5 <h3>{{result.title}}</h3>

6 <p>{{result.description}}</p>

7 <p><a href="{{result.videoUrl}}"

8 class="btn btn-default" role="button">

9 Watch</p>

10 </div>

11 </div>

12 </div>

The SearchResultComponent simply stores the SearchRe-
sult in the instance variable result.

Writing YouTubeSearchComponent

The last component we have to implement is the YouTubeSearchComponent. This is
the component that ties everything together.

HTTP 234

YouTubeSearchComponent @Component

code/http/src/app/you-tube-search/you-tube-search.component.ts

4 @Component({

5 selector: 'app-you-tube-search',

6 templateUrl: './you-tube-search.component.html'

7 })

8 export class YouTubeSearchComponent implements OnInit {

9 results: SearchResult[];

10 loading: boolean;

Our @Component decorator is straightforward: use the selector app-you-tube-

search.

YouTubeSearchComponent Controller

Before we look at the template, let’s take a look at the YouTubeSearchComponent

controller:

code/http/src/app/you-tube-search/you-tube-search.component.ts

8 export class YouTubeSearchComponent implements OnInit {

9 results: SearchResult[];

10 loading: boolean;

11

12 constructor() { }

13 ngOnInit() { }

14

15 updateResults(results: SearchResult[]): void {

16 this.results = results;

17 // console.log("results:", this.results); // uncomment to take a look

18 }

19 }

This component holds one instance variable: resultswhich is an array of SearchRe-
sults.

We also define one function: updateResults. updateResults simply takes whatever
new SearchResult[] it’s given and sets this.results to the new value.

We’ll use both results and updateResults in our template.

HTTP 235

YouTubeSearchComponent template

Our view needs to do three things:

1. Show the loading indicator, if we’re loading
2. Listen to events on the search-box
3. Show the search results

Next lets look at our template. Let’s build some basic structure and show the loading
gif next to the header:

code/http/src/app/you-tube-search/you-tube-search.component.html

1 <div class='container'>

2 <div class="page-header">

3 <h1>YouTube Search

4 <img

5 style="float: right;"

6 *ngIf="loading"

7 src='assets/images/loading.gif' />

8 </h1>

9 </div>

We only want to show this loading image if loading is true, so we use ngIf to
implement that functionality.

Next, let’s look at the markup where we use our search-box:

code/http/src/app/you-tube-search/you-tube-search.component.html

10 <div class="row">

11 <div class="input-group input-group-lg col-md-12">

12 <app-search-box

13 (loading)="loading = $event"

14 (results)="updateResults($event)"

15 ></app-search-box>

16 </div>

The interesting part here is how we bind to the loading and results outputs. Notice,
that we use the (output)="action()" syntax here.

HTTP 236

For the loading output, we run the expression loading = $event. $event will be
substituted with the value of the event that is emitted from the EventEmitter. That
is, in our SearchBoxComponent, when we call this.loading.emit(true) then $event

will be true.

Similarly, for the results output, we call the updateResults() function whenever
a new set of results are emitted. This has the effect of updating our components
results instance variable.

Lastly, we want to take the list of results in this component and render a search-

result for each one:

code/http/src/app/you-tube-search/you-tube-search.component.html

19 <div class="row">

20 <app-search-result

21 *ngFor="let result of results"

22 [result]="result">

23 </app-search-result>

24 </div>

25 </div>

YouTubeSearchComponent Full Listing

Here’s the full listing for the YouTubeSearchComponent:

code/http/src/app/you-tube-search/you-tube-search.component.ts

4 @Component({

5 selector: 'app-you-tube-search',

6 templateUrl: './you-tube-search.component.html'

7 })

8 export class YouTubeSearchComponent implements OnInit {

9 results: SearchResult[];

10 loading: boolean;

11

12 constructor() { }

13 ngOnInit() { }

14

15 updateResults(results: SearchResult[]): void {

16 this.results = results;

17 // console.log("results:", this.results); // uncomment to take a look

HTTP 237

18 }

19 }

and the template:

code/http/src/app/you-tube-search/you-tube-search.component.html

1 <div class='container'>

2 <div class="page-header">

3 <h1>YouTube Search

4 <img

5 style="float: right;"

6 *ngIf="loading"

7 src='assets/images/loading.gif' />

8 </h1>

9 </div>

10

11 <div class="row">

12 <div class="input-group input-group-lg col-md-12">

13 <app-search-box

14 (loading)="loading = $event"

15 (results)="updateResults($event)"

16 ></app-search-box>

17 </div>

18 </div>

19

20 <div class="row">

21 <app-search-result

22 *ngFor="let result of results"

23 [result]="result">

24 </app-search-result>

25 </div>

26 </div>

There we have it! A functional search-as-you-type implemented for YouTube video
search! Try running it from the code examples if you haven’t already.

@angular/common/http API

Of course, all of the HTTP requests we’ve made so far have simply been GET requests.
It’s important that we know how we can make other requests too.

HTTP 238

Making a POST request

Making POST request with @angular/common/http is very much like making a GET

request except that we have one additional parameter: a body.

jsonplaceholder API⁵⁷ also provides a convent URL for testing our POST requests, so
let’s use it for a POST:

code/http/src/app/more-http-requests/more-http-requests.component.ts

20 makePost(): void {

21 this.loading = true;

22 this.http

23 .post(

24 'https://jsonplaceholder.typicode.com/posts',

25 JSON.stringify({

26 body: 'bar',

27 title: 'foo',

28 userId: 1

29 })

30)

31 .subscribe(data => {

32 this.data = data;

33 this.loading = false;

34 });

35 }

Notice in the second argument we’re taking an Object and converting it to a JSON
string using JSON.stringify.

PUT / PATCH / DELETE / HEAD

There are a few other fairly common HTTP requests and we call them in much the
same way.

• http.put and http.patch map to PUT and PATCH respectively and both take a
URL and a body

• http.delete and http.headmap to DELETE and HEAD respectively and both take
a URL (no body)

⁵⁷http://jsonplaceholder.typicode.com

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/

HTTP 239

Here’s how we might make a DELETE request:

code/http/src/app/more-http-requests/more-http-requests.component.ts

37 makeDelete(): void {

38 this.loading = true;

39 this.http

40 .delete('https://jsonplaceholder.typicode.com/posts/1')

41 .subscribe(data => {

42 this.data = data;

43 this.loading = false;

44 });

45 }

Custom HTTP Headers

Let’s say we want to craft a GET request that uses a special X-API-TOKEN header. We
can create a request with this header like so:

code/http/src/app/more-http-requests/more-http-requests.component.ts

47 makeHeaders(): void {

48 const headers: HttpHeaders = new HttpHeaders({

49 'X-API-TOKEN': 'ng-book'

50 });

51

52 const req = new HttpRequest(

53 'GET',

54 'https://jsonplaceholder.typicode.com/posts/1',

55 {

56 headers: headers

57 }

58);

59

60 this.http.request(req).subscribe(data => {

61 this.data = data['body'];

62 });

63 }

HTTP 240

Summary

@angular/common/http is flexible and suitable for a wide variety of APIs.

One of the great things about @angular/common/http is that it has support for
mocking the backend which is very useful in testing. To learn about testing HTTP,
flip on over to the testing chapter.

Routing
In web development, routing means splitting the application into different areas
usually based on rules that are derived from the current URL in the browser.

For instance, if we visit the / path of a website, we may be visiting the home route
of that website. Or if we visit /about we want to render the “about page”, and so on.

Why Do We Need Routing?

Defining routes in our application is useful because we can:

• separate different areas of the app;
• maintain the state in the app;
• protect areas of the app based on certain rules;

For example, imagine we are writing an inventory application similar to the one we
described in previous chapters.

When we first visit the application, we might see a search form where we can enter
a search term and get a list of products that match that term.

After that, we might click a given product to visit that product’s details page.

Because our app is client-side, it’s not technically required that we change the URL
when we change “pages”. But it’s worth thinking about for a minute: what would be
the consequences of using the same URL for all pages?

• You wouldn’t be able to refresh the page and keep your location within the app
• You wouldn’t be able to bookmark a page and come back to it later
• You wouldn’t be able to share the URL of that page with others

Routing 242

Or put in a positive light, routing lets us define a URL string that specifies where
within our app a user should be.

In our inventory example we could determine a series of different routes for each
activity, for instance:

The initial root URL could be represented by http://our-app/. When we visit this
page, we could be redirected to our “home” route at http://our-app/home.

When accessing the ‘About Us’ area, the URL could become http://our-app/about.
This way if we sent the URL http://our-app/about to another user they would see
same page.

How client-side routing works

Perhaps you’ve written server-side routing code before (though, it isn’t necessary to
complete this chapter). Generally with server-side routing, the HTTP request comes
in and the server will render a different controller depending on the incoming URL.

For instance, with Express.js⁵⁸ you might write something like this:

var express = require('express');

var router = express.Router();

// define the about route

router.get('/about', function(req, res) {

res.send('About us');

});

Or with Ruby on Rails⁵⁹ you might have:

⁵⁸http://expressjs.com/guide/routing.html
⁵⁹http://rubyonrails.org/

http://expressjs.com/guide/routing.html
http://rubyonrails.org/
http://expressjs.com/guide/routing.html
http://rubyonrails.org/

Routing 243

routes.rb

get '/about', to: 'pages#about'

PagesController.rb

class PagesController < ActionController::Base

def about

render

end

end

The pattern varies per framework, but in both of these cases you have a server that
accepts a request and routes to a controller and the controller runs a specific action,
depending on the path and parameters.

Client-side routing is very similar in concept but different in implementation. With
client-side routingwe’re not necessarily making a request to the server on every
URL change. With our Angular apps, we refer to them as “Single Page Apps” (SPA)
because our server only gives us a single page and it’s our JavaScript that renders the
different pages.

So how can we have different routes in our JavaScript code?

The beginning: using anchor tags

Client-side routing started out with a clever hack: Instead of using a normal server-
side URL for a page in our SPA, we use the anchor tag as the client-side URL.

As you may already know, anchor tags were traditionally used to link directly to
a place within the webpage and make the browser scroll all the way to where that
anchor was defined. For instance, if we define an anchor tag in an HTML page:

<!-- ... lots of page content here ... -->

<h1>About</h1>

Andwe visited the URL http://something/#about, the browser would jump straight
to that H1 tag that identified by the about anchor.

The clever move for client-side frameworks used for SPAs was to take the anchor
tags and use them represent the routes within the app by formatting them as paths.

Routing 244

For example, the about route for an SPAwould be something like http://something/#/about.
This is what is known as hash-based routing.

What’s neat about this trick is that it looks like a “normal” URL because we’re starting
our anchor with a slash (/about).

The evolution: HTML5 client-side routing

With the introduction of HTML5, browsers acquired the ability to programmatically
create new browser history entries that change the displayed URL without the need
for a new request.

This is achieved using the history.pushState method that exposes the browser’s
navigational history to JavaScript.

So now, instead of relying on the anchor hack to navigate routes, modern frameworks
can rely on pushState to perform history manipulation without reloads.

Angular 1 Note: This way of routing already works in Angular 1, but it
needs to be explicitly enabled using $locationProvider.html5Mode(true).

In Angular, however, the HTML5 is the default mode. Later in this chapter we show
how to change from HTML5 mode to the old anchor tag mode.

There’s two things you need to be aware of when using HTML5 mode
routing, though

1. Not all browsers support HTML5 mode routing, so if you need to
support older browsers you might be stuck with hash-based routing
for a while.

2. The server has to support HTML5 based routing.

It may not be immediately clear why the server has to support HTML5
based-routing, we’ll talk more about why later in this chapter.

Routing 245

Writing our first routes

The Angular docs recommends using HTML5 mode routing⁶⁰. But due to
the challenges mentioned in the previous section we will for simplicity be
using hash based routing in our examples.

In Angular we configure routes by mapping paths to the component that will handle
them.

Let’s create a small app that has multiple routes. On this sample application we will
have 3 routes:

• A main page route, using the /#/home path;
• An about page, using the /#/about path;
• A contact us page, using the /#/contact path;

And when the user visits the root path (/#/), it will redirect to the home path.

Components of Angular routing

There are three main components that we use to configure routing in Angular:

• Routes describes the routes our application supports
• RouterOutlet is a “placeholder” component that shows Angular where to put
the content of each route

• RouterLink directive is used to link to routes

Let’s look at each one more closely.

Imports

In order to use the router in Angular, we import constants from the @angular/router
package:

⁶⁰https://angular.io/docs/ts/latest/guide/router.html#!#browser-url-styles

https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles
https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles

Routing 246

code/routes/routing/src/app/app.module.ts

5 import {

6 RouterModule,

7 Routes

8 } from '@angular/router';

Now we can define our router configuration.

Routes

To define routes for our application, create a Routes configuration and then use
RouterModule.forRoot(routes) to provide our application with the dependencies
necessary to use the router. First, let’s look at the routes definitions:

code/routes/routing/src/app/app.module.ts

26 const routes: Routes = [

27 // basic routes

28 { path: '', redirectTo: 'home', pathMatch: 'full' },

29 { path: 'home', component: HomeComponent },

30 { path: 'about', component: AboutComponent },

31 { path: 'contact', component: ContactComponent },

32 { path: 'contactus', redirectTo: 'contact' },

33

34 // authentication demo

35 { path: 'login', component: LoginComponent },

36 {

37 path: 'protected',

38 component: ProtectedComponent,

39 canActivate: [LoggedInGuard]

40 },

41

42 // nested

43 {

44 path: 'products',

45 component: ProductsComponent,

46 children: childRoutes

47 }

48];

Notice a few things about the routes:

Routing 247

• path specifies the URL this route will handle
• component is what ties a given route path to a component that will handle the
route

• the optional redirectTo is used to redirect a given path to an existing route

We’ll dive into the details of each route in this chapter, but at a high-level, the goal
of routes is to specify which component will handle a given path.

Redirections

When we use redirectTo on a route definition, it will tell the router that when we
visit the path of the route, we want the browser to be redirected to another route.

In our sample code above, if we visit the root path at http://localhost:4200/#/⁶¹, we’ll
be redirected to the route home.

Another example is the contactus route:

code/routes/routing/src/app/app.module.ts

32 { path: 'contactus', redirectTo: 'contact' },

In this case, if we visit the URL http://localhost:4200/#/contactus⁶², we’ll see that the
browser redirects to /contact.

Sample Code The complete code for the examples in this section can be
found in the routes/routing folder of the sample code. That folder contains
a README.md, which gives instructions for building and running the project.

There are many different imports required for routing and we don’t list
every single one in every code example below. However we do list the
filename and line number from which almost every example is taken from.
If you’re having trouble figuring out how to import a particular class, open
up the code using your editor to see the entire code listing.

Try running the code while reading this section and feel free play around
to get a deeper insight about how it all works.

⁶¹http://localhost:4200/#/
⁶²http://localhost:4200/#/contactus

http://localhost:4200/#/
http://localhost:4200/#/contactus
http://localhost:4200/#/
http://localhost:4200/#/contactus

Routing 248

Installing our Routes

Now that we have our Routes routes, we need to install it. To use the routes in our
app we do two things to our NgModule:

1. Import the RouterModule
2. Install the routes using RouterModule.forRoot(routes) in the imports of our

NgModule

Here’s our routes configured into our NgModule for this app:

code/routes/routing/src/app/app.module.ts

26 const routes: Routes = [

27 // basic routes

28 { path: '', redirectTo: 'home', pathMatch: 'full' },

29 { path: 'home', component: HomeComponent },

30 { path: 'about', component: AboutComponent },

31 { path: 'contact', component: ContactComponent },

32 { path: 'contactus', redirectTo: 'contact' },

code/routes/routing/src/app/app.module.ts

59 imports: [

60 BrowserModule,

61 FormsModule,

62 HttpClientModule,

63 RouterModule.forRoot(routes), // <-- routes

64

65 // added this for our child module

66 ProductsModule

67],

RouterOutlet using <router-outlet>

When we change routes, we want to keep our outer “layout” template and only
substitute the “inner section” of the page with the route’s component.

Routing 249

In order to describe to Angular where in our page we want to render the contents
for each route, we use the RouterOutlet directive.

Our component @Component has a template which specifies some div structure, a
section for Navigation, and a directive called router-outlet.

The router-outlet element indicates where the contents of each route compo-
nent will be rendered.

We are are able to use the router-outlet directive in our template because
we imported the RouterModule in our NgModule.

Here’s the component and template for the navigation wrapper of our app:

code/routes/routing/src/app/app.component.ts

6 @Component({

7 selector: 'app-root',

8 templateUrl: './app.component.html',

9 styleUrls: ['./app.component.css']

10 })

11 export class AppComponent {

12 constructor(private router: Router) {

13 };

14 }

and the template:

code/routes/routing/src/app/app.component.html

1 <div class="page-header">

2 <div class="container">

3 <h1>Router Sample</h1>

4 <div class="navLinks">

5 <a [routerLink]="['/home']">Home

6 <a [routerLink]="['/about']">About Us

7 <a [routerLink]="['/contact']">Contact Us

8 |

9 <a [routerLink]="['/products']">Products

10 <a [routerLink]="['/login']">Login

11 <a [routerLink]="['/protected']">Protected

12 </div>

Routing 250

13 </div>

14 </div>

15

16 <div id="content">

17 <div class="container">

18 <router-outlet></router-outlet>

19 </div>

20 </div>

If we look at the template above, you will note the router-outlet element right
below the navigation menu. When we visit /home, that’s where HomeComponent

template will be rendered. The same happens for the other components.

RouterLink using [routerLink]

Now that we know where route templates will be rendered, how do we tell Angular
to navigate to a given route?

We might try linking to the routes directly using pure HTML:

1 Home

But if we do this, we’ll notice that clicking the link triggers a page reload and that’s
definitely not what we want when programming single page apps.

To solve this problem, Angular provides a solution that can be used to link to routes
with no page reload: the RouterLink directive.

This directive allows you to write links using a special syntax:

Routing 251

code/routes/routing/src/app/app.component.html

3 <h1>Router Sample</h1>

4 <div class="navLinks">

5 <a [routerLink]="['/home']">Home

6 <a [routerLink]="['/about']">About Us

7 <a [routerLink]="['/contact']">Contact Us

8 |

We can see on the left-hand side the [routerLink] that applies the directive to the
current element (in our case a tags).

Now, on the right-hand side we have an array with the route path as the first element,
like "['/home']" or "['/about']" that will indicate which route to navigate to when
we click the element.

It might seem a little odd that the value of routerLink is a string with an array
containing a string ("['/home']", for example). This is because there are more things
you can provide when linking to routes, but we’ll look at this into more detail when
we talk about child routes and route parameters.

For now, we’re only using routes names from the root app component.

Putting it all together

So now that we have all the basic pieces, let’s make them work together to transition
from one route to the other.

The first thing we need to write for our application is the index.html file.

Here’s the full code for that:

Routing 252

code/routes/routing/src/index.html

1 <!doctype html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>Routing</title>

6 <base href="/">

7

8 <meta name="viewport" content="width=device-width, initial-scale=1">

9 <link rel="icon" type="image/x-icon" href="favicon.ico">

10 </head>

11 <body>

12 <app-root>Loading...</app-root>

13 </body>

14 </html>

The code should be familiar by now, with the exception of this line:

<base href="/">

This line declares the baseHTML tag. This tag is traditionally used to tell the browser
where to look for images and other resources declared using relative paths.

It turns out Angular Router also relies on this tag to determine how to construct its
routing information.

For instance, if we have a route with a path of /hello and our base element declares
href="/app", the application will use /app/# as the concrete path.

Sometimes though, coders of an Angular application don’t have access to the head

section of the application HTML. This is true for instance, when reusing headers and
footers of a larger, pre-existing application.

Fortunately there is a workaround for this case. You can declare the application base
path programmatically, when configuring our NgModule by using the APP_BASE_HREF
provider:

Routing 253

@NgModule({

declarations: [RoutesDemoApp],

imports: [

BrowserModule,

RouterModule.forRoot(routes) // <-- routes

],

bootstrap: [RoutesDemoApp],

providers: [

{ provide: LocationStrategy, useClass: HashLocationStrategy },

{ provide: APP_BASE_HREF, useValue: '/' } // <--- this right here

]

})

Putting { provide: APP_BASE_HREF, useValue: '/' } in the providers is the equiv-
alent of using <base href="/"> on our application HTML header.

When deploying to production we can also set the value of the base-href
by using the --base-href command-line option

Creating the Components

Before we get to the main app component, let’s create 3 simple components, one for
each of the routes.

HomeComponent

The HomeComponentwill just have an h1 tag that says “Welcome!”. Here’s the full code
for our HomeComponent:

Routing 254

code/routes/routing/src/app/home/home.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-home',

5 templateUrl: './home.component.html',

6 styleUrls: ['./home.component.css']

7 })

8 export class HomeComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

And template:

code/routes/routing/src/app/home/home.component.html

1 <h1>Welcome Home!</h1>

AboutComponent

Similarly, the AboutComponent will just have a basic h1:

code/routes/routing/src/app/about/about.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-about',

5 templateUrl: './about.component.html',

6 styleUrls: ['./about.component.css']

7 })

8 export class AboutComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

Routing 255

13 }

14

15 }

And template:

code/routes/routing/src/app/about/about.component.html

1 <h1>About Us</h1>

ContactComponent

And, likewise with AboutComponent:

code/routes/routing/src/app/contact/contact.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-contact',

5 templateUrl: './contact.component.html',

6 styleUrls: ['./contact.component.css']

7 })

8 export class ContactComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

And template:

code/routes/routing/src/app/contact/contact.component.html

1 <h1>Contact Us</h1>

Nothing really very interesting about those components, so let’s move on to the main
app.module.ts file.

Routing 256

Application Component

Now we need to create the root-level “application” component that will tie every-
thing together.

We start with the imports we’ll need, both from the core and router bundles:

code/routes/routing/src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpClientModule } from "@angular/common/http";

5 import {

6 RouterModule,

7 Routes

Next step is to import the three components we created above:

code/routes/routing/src/app/app.module.ts

15 import { AppComponent } from './app.component';

16 import { HomeComponent } from './home/home.component';

17 import { ContactComponent } from './contact/contact.component';

18 import { AboutComponent } from './about/about.component';

For our root component, we’re going to use two router directives: RouterOutlet and
the RouterLink. Those directives, along with all other common router directives are
imported when we put RouterModule in the imports section of our NgModule.

As a recap, the RouterOutlet directive is then used to indicate where in our
template the route contents should be rendered. That’s represented by the <router-
outlet></router-outlet> snippet in our AppComponent template.

The RouterLink directive is used to create navigation links to our routes:

Routing 257

code/routes/routing/src/app/app.component.html

1 <div class="page-header">

2 <div class="container">

3 <h1>Router Sample</h1>

4 <div class="navLinks">

5 <a [routerLink]="['/home']">Home

6 <a [routerLink]="['/about']">About Us

7 <a [routerLink]="['/contact']">Contact Us

8 |

9 <a [routerLink]="['/products']">Products

10 <a [routerLink]="['/login']">Login

11 <a [routerLink]="['/protected']">Protected

12 </div>

13 </div>

14 </div>

15

16 <div id="content">

17 <div class="container">

18 <router-outlet></router-outlet>

19 </div>

20 </div>

Using [routerLink] will instruct Angular to take ownership of the click event and
then initiate a route switch to the right place, based on the route definition.

Configuring the Routes

Next, we declare the routes creating an array of objects that conform to the Routes
type:

Routing 258

code/routes/routing/src/app/app.module.ts

26 const routes: Routes = [

27 // basic routes

28 { path: '', redirectTo: 'home', pathMatch: 'full' },

29 { path: 'home', component: HomeComponent },

30 { path: 'about', component: AboutComponent },

31 { path: 'contact', component: ContactComponent },

32 { path: 'contactus', redirectTo: 'contact' },

code/routes/routing/src/app/app.module.ts

50 @NgModule({

51 declarations: [

52 AppComponent,

53 HomeComponent,

54 ContactComponent,

55 AboutComponent,

56 LoginComponent,

57 ProtectedComponent,

58],

59 imports: [

60 BrowserModule,

61 FormsModule,

62 HttpClientModule,

63 RouterModule.forRoot(routes), // <-- routes

64

65 // added this for our child module

66 ProductsModule

67],

68 providers: [

69 // uncomment this for "hash-bang" routing

70 // { provide: LocationStrategy, useClass: HashLocationStrategy }

71 AUTH_PROVIDERS,

72 LoggedInGuard

73],

74 bootstrap: [AppComponent]

75 })

76 export class AppModule { }

Notice that we put all necessary components in our declarations. If we’re
going to route to a component, then it needs to be declared in some
NgModule (either this module or imported).

Routing 259

In our importswehave RouterModule.forRoot(routes). RouterModule.forRoot(routes)
is a function that will take our routes, configure the router, and return a list
of dependencies like RouteRegistry, Location, and several other classes that are
necessary to make routing work.

In our providers we have this:

{ provide: LocationStrategy, useClass: HashLocationStrategy }

Let’s take an in depth look of what we want to achieve with this line.

Routing Strategies

The way the Angular application parses and creates paths from and to route
definitions is called location strategy.

In Angular 1 this is called routing modes instead

The default strategy is PathLocationStrategy, which is what we call HTML5
routing. While using this strategy, routes are represented by regular paths, like /home
or /contact.

We can change the location strategy used for our application by binding the
LocationStrategy class to a new, concrete strategy class.

Instead of using the default PathLocationStrategy we can also use the HashLoca-

tionStrategy.

The reason we’re using the hash strategy as a default is because if we were using
HTML5 routing, our URLs would end up being regular paths (that is, not using
hash/anchor tags).

This way, the routes would work when you click a link and navigate on the client
side, let’s say from /about to /contact.

Routing 260

If we were to refresh the page, instead of asking the server for the root URL, which is
what is being served, instead we’d be asking for /about or /contact. Because there’s
no known page at /about the server would return a 404.

This default strategy works with hash based paths, like /#/home or /#/contact that
the server understands as being the / path. (This is also the default mode in Angular
1.)

Let’s say you want to use HTML5 mode in production, how do you set this
up?

In order to use HTML5 mode routing, you have to configure your server to
redirect every “missing” route to the root URL.

Angular CLI supports this natively, but know that it doesn’t necessarily
work by default on your server. In the routes/routing project you can use
HTML5 routes by simply doing ng serve

If we wanted to make our example application work with this new strategy, first
we have to import LocationStrategy and HashLocationStrategy and then add that
location strategy to the providers of our NgModule.

You could write your own strategy if you wanted to.All you need to do
is extend the LocationStrategy class and implement the methods. A good
way to start is reading the Angular source for the HashLocationStrategy

or PathLocationStrategy classes.

Running the application

You can now go into the application root folder (code/routes/routing) and run npm

start to boot the application.

When you type http://localhost:4200/⁶³ into your browser you should see the home
route rendered:

⁶³http://localhost:4200/

http://localhost:4200/
http://localhost:4200/

Routing 261

Home Route

Notice that the URL in the browser was redirected to http://localhost:4200/home⁶⁴.

Now clicking each link will render the appropriate routes:

⁶⁴http://localhost:4200/home

http://localhost:4200/home
http://localhost:4200/home

Routing 262

About Route

Routing 263

Contact Us Route

Route Parameters

In our apps we often want to navigate to a specific resource. For instance, say we had
a news website and we had many articles. Each article may have an ID, and if we
had an article with ID 3 then we might navigate to that article by visiting the URL:

/articles/3

And if we had an article with an ID of 4 we would access it at

/articles/4

and so on.

Obviously we’re not going to want to write a route for each article, but instead
we want to use a variable, or route parameter. We can specify that a route takes
a parameter by putting a colon : in front of the path segment like this:

Routing 264

/route/:param

So in our example news site, we might specify our route as:

/product/:id

To add a parameter to our router configuration, we specify the route path like this:

const routes: Routes = [

{ path: 'product/:id', component: ProductComponent },

];

When we visit the route /product/123, the 123 part will be passed as the id route
parameter to our route.

But how can we retrieve the parameter for a given route? That’s where we use route
parameters.

ActivatedRoute

In order to use route parameters, we need to first import ActivatedRoute:

1 import { ActivatedRoute } from '@angular/router';

Next, we inject the ActivatedRoute into the constructor of our component. For
example, let’s say we have a Routes that specifies the following:

1 const routes: Routes = [

2 { path: 'product/:id', component: ProductComponent }

3];

Then when we write the ProductComponent, we add the ActivatedRoute as one of
the constructor arguments:

Routing 265

1 export class ProductComponent {

2 id: string;

3

4 constructor(private route: ActivatedRoute) {

5 route.params.subscribe(params => { this.id = params['id']; });

6 }

7 }

Notice that route.params is an observable. We can extract the value of the param into
a hard value by using .subscribe. In this case, we assign the value of params['id']
to the id instance variable on the component.

Now when we visit /product/230, our component’s id attribute will receive 230.

Music Search App

Let’s now work on a more complex application. We will build a music search
application that has the following features:

1. Search for tracks that match a given term
2. Show matching tracks in a grid
3. Show artist details when the artist name is clicked
4. Show album details and show a list of tracks when the album name is clicked
5. Show song details allow the user to play a preview when the song name is

clicked

Routing 266

The Search View of our Music App

The routes we will need for this application will be:

• /search - search form and results

Routing 267

• /artists/:id - artist info, represented by a Spotify ID
• /albums/:id - album info, with a list of tracks using the Spotify ID
• /tracks/:id - track info and preview, also using the Spotify ID

Sample Code The complete code for the examples in this section can be
found in the routes/music folder of the sample code. That folder contains
a README.md, which gives instructions for building and running the project.

We will use the Spotify API⁶⁵ to get information about tracks, artists and albums.

First Steps

The first file we need work on is app.module.ts. Let’s start by importing classes we’ll
use from Angular:

code/routes/music/src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpClientModule } from "@angular/common/http";

5 import {

6 RouterModule,

7 Routes

8 } from '@angular/router';

9 import {

10 LocationStrategy,

11 HashLocationStrategy,

12 APP_BASE_HREF

13 } from '@angular/common';

14

15 import { AppComponent } from './app.component';

16 import { AlbumComponent } from './album/album.component';

17 import { ArtistComponent } from './artist/artist.component';

Now that we have the imports there, let’s think about the components we’ll use for
each route.

⁶⁵https://developer.spotify.com/web-api

https://developer.spotify.com/web-api
https://developer.spotify.com/web-api

Routing 268

• For the Search route, we’ll create a SearchComponent. This component will talk
to the Spotify API to perform the search and then display the results on a grid.

• For the Artists route, we’ll create an ArtistComponent which will show the
artist’s information

• For the Albums route, we’ll create an AlbumComponent which will show the list
of tracks in the album

• For the Tracks route, we’ll create a TrackComponent which will show the track
and let us play a preview of the song

Since this new component will need to interact with the Spotify API, it seems like
we need to build a service that uses the http module to call out to the API server.

Everything in our app depends on the data, so let’s build the SpotifyService first.

The SpotifyService

You can find the full code for the final version of the SpotifyService in
the routes/music/src/app folder of the sample code.

The first method we’ll implement is searchTrackwhich will search for a track, given
a search term.

One of the endpoints documented on Spotify API docs is the Search endpoint⁶⁶.

This endpoint does exactly what we want: it takes a query (using the q parameter)
and a type parameter.

Query in this case is the search term. And since we’re searching for songs, we should
use type=track.

Here’s what a first version of the service could look like:

⁶⁶https://developer.spotify.com/web-api/search-item/

https://developer.spotify.com/web-api/search-item/
https://developer.spotify.com/web-api/search-item/

Routing 269

1 class SpotifyService {

2 constructor(public http: HttpClient) {

3 }

4

5 searchTrack(query: string) {

6 let params: string = [

7 `q=${query}`,

8 `type=track`

9].join("&");

10 let queryURL: string = `https://api.spotify.com/v1/search?${params}`;

11 return this.http.request(queryURL)

12 }

13 }

This code performs anHTTP GET request to the URL https://api.spotify.com/v1/search⁶⁷,
passing our query as the search term and type hardcoded to track.

This http call returns an Observable. We are going one step further and using the
RxJS function map to transform the result we would get (which is an http module’s
Response object) and parsing it as JSON, resulting on an object.

Any function that calls searchTrack will then have to use the Observable API to
subscribe to the response like this:

service

.searchTrack('query')

.subscribe((res: any) => console.log('Got object', res))

The SearchComponent

Now that we have a service that will perform track searches, we can start coding the
SearchComponent.

Again, we start with an import section:

⁶⁷https://api.spotify.com/v1/search

https://api.spotify.com/v1/search
https://api.spotify.com/v1/search

Routing 270

code/routes/music/src/app/search/search.component.ts

1 /*

2 * Angular

3 */

4

5 import {Component, OnInit} from '@angular/core';

6 import {

7 Router,

8 ActivatedRoute,

9 } from '@angular/router';

10

11 /*

12 * Services

13 */

14 import {SpotifyService} from '../spotify.service';

Here we’re importing, among other things, the SpotifyService class we just created.

The goal here is to render each resulting track side by side on a card like below:

Routing 271

Music App Card

We then start coding the component. We’re using search as the selector, making a
few imports and using the following template. The template is a bit long because
we’re putting some reasonable styles on it using the CSS framework Bootstrap⁶⁸, but
it isn’t particularly complicated, relative to what we’ve done so far:

⁶⁸http://getbootstrap.com

http://getbootstrap.com/
http://getbootstrap.com/

Routing 272

code/routes/music/src/app/search/search.component.html

1 <h1>Search</h1>

2

3 <p>

4 <input type="text" #newquery

5 [value]="query"

6 (keydown.enter)="submit(newquery.value)">

7 <button (click)="submit(newquery.value)">Search</button>

8 </p>

9

10 <div *ngIf="results">

11 <div *ngIf="!results.length">

12 No tracks were found with the term '{{ query }}'

13 </div>

14

15 <div *ngIf="results.length">

16 <h1>Results</h1>

17

18 <div class="row">

19 <div class="col-sm-6 col-md-4" *ngFor="let t of results">

20 <div class="thumbnail">

21 <div class="content">

22

23 <div class="caption">

24 <h3>

25 <a [routerLink]="['/artists', t.artists[0].id]">

26 {{ t.artists[0].name }}

27

28 </h3>

29

30 <p>

31 <a [routerLink]="['/tracks', t.id]">

32 {{ t.name }}

33

34 </p>

35 </div>

36 <div class="attribution">

37 <h4>

38 <a [routerLink]="['/albums', t.album.id]">

39 {{ t.album.name }}

40

41 </h4>

42 </div>

43 </div>

Routing 273

44 </div>

45 </div>

46 </div>

47 </div>

48 </div>

The Search Field

Let’s break down the HTML template a bit.

This first section will have the search field:

code/routes/music/src/app/search/search.component.html

3 <p>

4 <input type="text" #newquery

5 [value]="query"

6 (keydown.enter)="submit(newquery.value)">

7 <button (click)="submit(newquery.value)">Search</button>

8 </p>

Here we have the input field and we’re binding its DOM element value property to
the query property of our component.

We also give this element a template variable named #newquery. We can now access
the value of this input within our template code by using newquery.value.

The button will trigger the submit method of the component, passing the value of
the input field as a parameter.

We also want to trigger submit when the user hits “Enter” so we bind to the
keydown.enter event on the input.

Search Results and Links

The next section displays the results. We’re relying on the NgFor directive to iterate
through each track from our results object:

Routing 274

code/routes/music/src/app/search/search.component.html

18 <div class="row">

19 <div class="col-sm-6 col-md-4" *ngFor="let t of results">

20 <div class="thumbnail">

For each track, we display the artist name:

code/routes/music/src/app/search/search.component.html

24 <h3>

25 <a [routerLink]="['/artists', t.artists[0].id]">

26 {{ t.artists[0].name }}

27

28 </h3>

Notice how we’re using the RouterLink directive to redirect to ['/artists',

t.artists[0].id].

This is how we set route parameters for a given route. Say we have an artist with an
id abc123. When this link is clicked, the app would then navigate to /artist/abc123
(where abc123 is the :id parameter).

Further down we’ll show how we can retrieve this value inside the component that
handles this route.

Now we display the track:

code/routes/music/src/app/search/search.component.html

30 <p>

31 <a [routerLink]="['/tracks', t.id]">

32 {{ t.name }}

33

34 </p>

And the album:

Routing 275

code/routes/music/src/app/search/search.component.html
38 <a [routerLink]="['/albums', t.album.id]">

39 {{ t.album.name }}

40

41 </h4>

SearchComponent Class

Let’s take a look at the constructor first:

code/routes/music/src/app/search/search.component.ts
22 export class SearchComponent implements OnInit {

23 query: string;

24 results: Object;

25

26 constructor(private spotify: SpotifyService,

27 private router: Router,

28 private route: ActivatedRoute) {

29 this.route

30 .queryParams

31 .subscribe(params => { this.query = params['query'] || ''; });

32 }

Here we’re declaring two properties:

• query for current search term and
• results for the search results

On the constructor we’re injecting the SpotifyService (that we created above),
Router, and the ActivatedRoute and making them properties of our class.

In our constructor we subscribe to the queryParams property - this lets us access
query parameters, such as the search term (params['query']).

In a URL like: http://localhost/#/search?query=cats&order=ascending, query-
Params gives us the parameters in an object. This means we could access the order
with params['order'] (in this case, ascending).

Also note that queryParams are different than route.params. Whereas route.params
match parameters in the route queryParams match parameters in the query string.

In this case, if there is no query param, we set this.query to the empty string.

Routing 276

search

In our SearchComponentwewill call out to the SpotifyService and render the results.
There are two cases when we want to run a search:

We want to run a search when the user:

• enters a search query and submits the form
• navigates to this page with a given URL in the query parameters (e.g. someone
shared a link or bookmarked the page)

To perform the actual search for both cases, we create the search method:

code/routes/music/src/app/search/search.component.ts

43 search(): void {

44 console.log('this.query', this.query);

45 if (!this.query) {

46 return;

47 }

48

49 this.spotify

50 .searchTrack(this.query)

51 .subscribe((res: any) => this.renderResults(res));

52 }

The search function uses the current value of this.query to know what to search
for. Because we subscribed to the queryParams in the constructor, we can be sure that
this.query will always have the most up-to-date value.

We then subscribe to the searchTrack Observable and whenever new results are
emitted we call renderResults.

Routing 277

code/routes/music/src/app/search/search.component.ts

54 renderResults(res: any): void {

55 this.results = null;

56 if (res && res.tracks && res.tracks.items) {

57 this.results = res.tracks.items;

58 }

59 }

We declared results as a component property. Whenever its value is changed, the
view will be automatically updated by Angular.

Searching on Page Load

As we pointed out above, we want to be able to jump straight into the results if the
URL includes a search query.

To do that, we are going to implement a hook Angular router provides for us to run
whenever our component is initialized.

But isn’t that what constructors are for? Well, yes and no. Yes, constructors
are used to initialize values, but if you want to write good, testable code,
you want to minimize the side effects of constructing an object. So keep in
mind that you should put your component’s initialization logic always on
a hook like below.

Here’s the implementation of the ngOnInit method:

code/routes/music/src/app/search/search.component.ts

34 ngOnInit(): void {

35 this.search();

36 }

To use ngOnInit we imported the OnInit class and declared that our
component implements OnInit.

As you can see, we’re just performing the search here. Since the termwe’re searching
for comes from the URL, we’re good.

Routing 278

submit

Now let’s see what we do when the user submits the form.

code/routes/music/src/app/search/search.component.ts

38 submit(query: string): void {

39 this.router.navigate(['search'], { queryParams: { query: query } })

40 .then(_ => this.search());

41 }

We’re manually telling the router to navigate to the search route, and providing a
query parameter, then performing the actual search.

Doing things this way gives us a great benefit: if we reload the browser, we’re going
to see the same search result rendered. We can say that we’re persisting the search
term on the URL.

Putting it all together

Here’s the full listing for the SearchComponent class:

code/routes/music/src/app/search/search.component.ts

1 /*

2 * Angular

3 */

4

5 import {Component, OnInit} from '@angular/core';

6 import {

7 Router,

8 ActivatedRoute,

9 } from '@angular/router';

10

11 /*

12 * Services

13 */

14 import {SpotifyService} from '../spotify.service';

15 ;

16

17 @Component({

18 selector: 'app-search',

19 templateUrl: './search.component.html',

Routing 279

20 styleUrls: ['./search.component.css']

21 })

22 export class SearchComponent implements OnInit {

23 query: string;

24 results: Object;

25

26 constructor(private spotify: SpotifyService,

27 private router: Router,

28 private route: ActivatedRoute) {

29 this.route

30 .queryParams

31 .subscribe(params => { this.query = params['query'] || ''; });

32 }

33

34 ngOnInit(): void {

35 this.search();

36 }

37

38 submit(query: string): void {

39 this.router.navigate(['search'], { queryParams: { query: query } })

40 .then(_ => this.search());

41 }

42

43 search(): void {

44 console.log('this.query', this.query);

45 if (!this.query) {

46 return;

47 }

48

49 this.spotify

50 .searchTrack(this.query)

51 .subscribe((res: any) => this.renderResults(res));

52 }

53

54 renderResults(res: any): void {

55 this.results = null;

56 if (res && res.tracks && res.tracks.items) {

57 this.results = res.tracks.items;

58 }

59 }

60 }

Routing 280

Trying the search

Now that we have completed the code for the search, let’s try it out:

Routing 281

Trying out Search

Routing 282

We can click the artist, track or album links to navigate to the proper route.

TrackComponent

For the track route, we use the TrackComponent. It basically displays the track name,
the album cover image and allow the user to play a preview using an HTML5 audio
tag:

code/routes/music/src/app/track/track.component.html

1 <div *ngIf="track">

2 <h1>{{ track.name }}</h1>

3

4 <p>

5

6 </p>

7

8 <p>

9 <audio controls src="{{ track.preview_url }}"></audio>

10 </p>

11

12 <p><a href (click)="back()">Back</p>

13 </div>

Like we did for the search before, we’re going to use the Spotify API. Let’s refactor
the method searchTrack and extract two other useful methods we can reuse:

code/routes/music/src/app/spotify.service.ts

13 export class SpotifyService {

14 static BASE_URL = "https://api.spotify.com/v1";

15

16 constructor(private http: HttpClient) {}

17

18 query(URL: string, params?: Array<string>): Observable<any> {

19 let queryURL = `${SpotifyService.BASE_URL}${URL}`;

20 if (params) {

21 queryURL = `${queryURL}?${params.join("&")}`;

22 }

23 const apiKey = environment.spotifyApiKey;

24 const headers = new HttpHeaders({

25 Authorization: `Bearer ${apiKey}`

Routing 283

26 });

27 const options = {

28 headers: headers

29 };

30

31 return this.http.request("GET", queryURL, options);

32 }

33

34 search(query: string, type: string): Observable<any> {

35 return this.query(`/search`, [`q=${query}`, `type=${type}`]);

36 }

Now that we’ve extracted those methods into the SpotifyService, notice how much
simpler searchTrack becomes:

code/routes/music/src/app/spotify.service.ts

38 searchTrack(query: string): Observable<any> {

39 return this.search(query, "track");

40 }

Now let’s create a method to allow the component we’re building retrieve track
information, based in the track ID:

code/routes/music/src/app/spotify.service.ts

42 getTrack(id: string): Observable<any> {

43 return this.query(`/tracks/${id}`);

44 }

And nowwe can use getTrack from a new ngOnInitmethod on the TrackComponent:

Routing 284

code/routes/music/src/app/track/track.component.ts

28 ngOnInit(): void {

29 this.spotify

30 .getTrack(this.id)

31 .subscribe((res: any) => this.renderTrack(res));

32 }

The other components work in a similar way and use get* methods from the
SpotifyService to retrieve information about either an Artist or a Track based on
their ID.

Wrapping up music search

Now we have a pretty functional music search and preview app. Try searching for a
few of your favorite tunes and try it out!

Routing 285

It Had to Route You

Router Hooks

There are times that we may want to do some action when changing routes. A classic
example of that is authentication. Let’s say we have a login route and a protected
route.

We want to only allow the app to go to the protected route if the correct username
and password were provided on the login page.

In order to do that, we need to hook into the lifecycle of the router and ask
to be notified when the protected route is being activated. We then can call an
authentication service and ask whether or not the user provided the right credentials.

In order to check if a component can be activated we add a guard class to the key
canActivate in our router configuration.

Routing 286

Let’s revisit our initial application, adding login and password input fields and a
new protected route that only works if we provide a certain username and password
combination.

Sample Code The complete code for the examples in this section build
on the first section and can be found in the routes/routing folder of the
sample code. That folder contains a README.md, which gives instructions for
building and running the project.

AuthService

Let’s create a very simple and minimal implementation of a service, responsible for
authentication and authorization of resources:

code/routes/routing/src/app/auth.service.ts

1 import { Injectable } from '@angular/core';

2

3 @Injectable()

4 export class AuthService {

5 login(user: string, password: string): boolean {

6 if (user === 'user' && password === 'password') {

7 localStorage.setItem('username', user);

8 return true;

9 }

10

11 return false;

12 }

The login method will return true if the provided user/password pair equals
'user' and 'password', respectively. Also, when it is matched, it’s going to use
localStorage to save the username. This will also serve as a flag to indicate whether
or not there is an active logged user.

If you’re not familiar, localStorage is an HTML5 provided key/value pair
that allows you to persist information on the browser. The API is very
simple, and basically allows the setting, retrieval and deletion of items. For
more information, see the Storage interface documents on MDN⁶⁹

⁶⁹https://developer.mozilla.org/en-US/docs/Web/API/Storage

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Storage

Routing 287

The logout method just clears the username value:

code/routes/routing/src/app/auth.service.ts

14 logout(): any {

15 localStorage.removeItem('username');

16 }

And the final two methods:

• getUser returns the username or null
• isLoggedIn uses getUser() to return true if we have a user

Here’s the code for those methods:

code/routes/routing/src/app/auth.service.ts

18 getUser(): any {

19 return localStorage.getItem('username');

20 }

21

22 isLoggedIn(): boolean {

23 return this.getUser() !== null;

24 }

The last thing we do is export an AUTH_PROVIDERS, so it can be injected into our app:

code/routes/routing/src/app/auth.service.ts

27 export const AUTH_PROVIDERS: Array<any> = [

28 { provide: AuthService, useClass: AuthService }

29];

Now that we have the AuthService we can inject it in our components to log the
user in, check for the currently logged in user, log the user out, etc.

In a little bit, we’ll also use it in our router to protect the ProtectedComponent. But
first, let’s create the component that we use to log in.

Routing 288

LoginComponent

This component will either show a login form, for the case when there is no logged
user, or display a little banner with user information along with a logout link.

The relevant code here is the login and logout methods:

code/routes/routing/src/app/login/login.component.ts

9 export class LoginComponent {

10 message: string;

11

12 constructor(public authService: AuthService) {

13 this.message = '';

14 }

15

16 login(username: string, password: string): boolean {

17 this.message = '';

18 if (!this.authService.login(username, password)) {

19 this.message = 'Incorrect credentials.';

20 setTimeout(function() {

21 this.message = '';

22 }.bind(this), 2500);

23 }

24 return false;

25 }

26

27 logout(): boolean {

28 this.authService.logout();

29 return false;

30 }

Once our service validates the credentials, we log the user in.

The component template has two snippets that are displayed based on whether the
user is logged in or not.

The first is a login form, protected by *ngIf="!authService.getUser()":

Routing 289

code/routes/routing/src/app/login/login.component.html

5 </div>

6

7 <form class="form-inline" *ngIf="!authService.getUser()">

8 <div class="form-group">

9 <label for="username">User: (type user)</label>

10 <input class="form-control" name="username" #username>

11 </div>

12

13 <div class="form-group">

14 <label for="password">Password: (type password)</label>

15 <input class="form-control" type="password" name="password" #password>

16 </div>

17

18

19 Submit

And the information banner, containing the logout link, protected by the inverse -

*ngIf="authService.getUser()":

code/routes/routing/src/app/login/login.component.html

23 <div class="well" *ngIf="authService.getUser()">

24 Logged in as {{ authService.getUser() }}

25 <a href (click)="logout()">Log out

26 </div>

There’s another snippet of code that is displayed when we have an authentication
error:

code/routes/routing/src/app/login/login.component.html

3 <div class="alert alert-danger" role="alert" *ngIf="message">

4 {{ message }}

5 </div>

Now that we can handle the user login, let’s create a resource that we are going to
protect behind a user login.

Routing 290

ProtectedComponent and Route Guards

The ProtectedComponent

Before we can protect the component, it needs to exist. Our ProtectedComponent is
straightforward:

code/routes/routing/src/app/protected/protected.component.ts
1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-protected',

5 templateUrl: './protected.component.html',

6 styleUrls: ['./protected.component.css']

7 })

8 export class ProtectedComponent implements OnInit {

9

10 constructor() { }

11

12 ngOnInit() {

13 }

14

15 }

And the template will show some protected content:

code/routes/routing/src/app/protected/protected.component.html
1 <h1>Protected</h1>

2 <p>

3 Protected content

4 </p>

We want this component to only be accessible to logged in users. But how can we
do that?

The answer is to use the router hook canActivatewith a guard class that implements
CanActivate.

The LoggedInGuard

We create a new file logged-in.guard.ts:

Routing 291

code/routes/routing/src/app/logged-in.guard.ts

1 /* tslint:disble max-line-length */

2 import { Injectable } from '@angular/core';

3 import {

4 CanActivate,

5 ActivatedRouteSnapshot,

6 RouterStateSnapshot

7 } from '@angular/router';

8 import { Observable } from 'rxjs/Observable';

9 import { AuthService } from './auth.service';

10

11 @Injectable()

12 export class LoggedInGuard implements CanActivate {

13 constructor(private authService: AuthService) {}

14

15 canActivate(

16 next: ActivatedRouteSnapshot,

17 state: RouterStateSnapshot): Observable<boolean> | Promise<boolean> | boolean {

18 const isLoggedIn = this.authService.isLoggedIn();

19 console.log('canActivate', isLoggedIn);

20 return isLoggedIn;

21 }

22 }

Angular CLI contains a generator for creating guards. So this file could be
created with the command: ng generate guard logged-in

Our guard states that it implements the CanActivate interface. This is satisfied by
implementing a method canActive.

We inject the AuthService into this class in the constructor and save it as a private
variable authService.

In our canActivate function we check this.authService to see if the user is-

LoggedIn.

Configuring the Router

To configure the router to use this guard we need to do the following:

Routing 292

1. import the LoggedInGuard
2. Use the LoggedInGuard in a route configuration
3. Include LoggedInGuard in the list of providers (so that it can be injected)

We do all of these steps in our app.module.ts.

We import the LoggedInGuard:

code/routes/routing/src/app/app.module.ts

23 import { AUTH_PROVIDERS } from './auth.service';

24 import { LoggedInGuard } from './logged-in.guard';

We add canActivate with our guard to the protected route:

code/routes/routing/src/app/app.module.ts

26 const routes: Routes = [

27 // basic routes

28 { path: '', redirectTo: 'home', pathMatch: 'full' },

29 { path: 'home', component: HomeComponent },

30 { path: 'about', component: AboutComponent },

31 { path: 'contact', component: ContactComponent },

32 { path: 'contactus', redirectTo: 'contact' },

33

34 // authentication demo

35 { path: 'login', component: LoginComponent },

36 {

37 path: 'protected',

38 component: ProtectedComponent,

39 canActivate: [LoggedInGuard]

40 },

41

42 // nested

43 {

44 path: 'products',

45 component: ProductsComponent,

46 children: childRoutes

47 }

48];

We add LoggedInGuard to our list of providers:

Routing 293

code/routes/routing/src/app/app.module.ts

68 providers: [

69 // uncomment this for "hash-bang" routing

70 // { provide: LocationStrategy, useClass: HashLocationStrategy }

71 AUTH_PROVIDERS,

72 LoggedInGuard

73],

Logging in

We import the LoginComponent:

code/routes/routing/src/app/app.module.ts

19 import { LoginComponent } from './login/login.component';

And then to access it we have:

1. a route that links to the LoginComponent
2. a new link to the protected route

Now when we open the application on the browser, we can see the new login form
and the new protected link:

Routing 294

Auth App - Initial Page

If you click the Protected link, you’ll see nothing happens. The same happens if you
try to manually visit http://localhost:4200/protected⁷⁰.

Now enter the string user for the user and password for the password on the form
and click Submit. You’ll see that we now get the current user displayed on a banner:

⁷⁰http://localhost:4200/protected

http://localhost:4200/protected
http://localhost:4200/protected

Routing 295

Auth App - Logged In

And, sure enough, if we click the Protected link, it gets redirected and the component
is rendered:

Routing 296

Auth App - Protected Area

A Note on Security: It’s important to know how client-side route protec-
tion is working before you rely too heavily on it for security. That is, you
should consider client-side route protection a form of user-experience and
not one of security.

Ultimately all of the javascript in your app that gets served to the client can
be inspected, whether the user is logged in or not.

So if you have sensitive data that needs to be protected, you must protect
it with server-side authentication. That is, require an API key (or auth
token) from the user which is validated by the server on every request for
data.

Writing a full-stack authentication system is beyond the scope of this book.
The important thing to know is that protecting routes on the client-side
doesn’t necessarily keep anyone from viewing the javascript pages behind
those routes.

Routing 297

Nested Routes

Nested routes is the concept of containing routes within other routes. With nested
routes we’re able to encapsulate the functionality of parent routes and have that
functionality apply to the child routes.

Let’s say we have a website with one area to allow users to know our team, called
Who we are? and another one for our Products.

We could think that the perfect route for Who we are? would be /about and for
products /products.

And we’re happily displaying all our team and all our products when visiting these
areas.

What happens when the website grows and we now need to display individual
information about each person in our team and also for each product we sell?

In order to support scenarios like these, the router allows the user to define nested
routes.

To do that, you can have multiple, nested router-outlet. So each area of our
application can have their own child components, that also have their own router-

outlets.

Let’s work on an example to clear things up.

In this example, we’ll have a products section where the user will be able to view two
highlighted products by visiting a nice URL. For all the other products, the routes will
use the product ID.

Configuring Routes

We will start by describing the products route on the app.module.ts file:

Routing 298

code/routes/routing/src/app/app.module.ts

26 const routes: Routes = [

27 // basic routes

28 { path: '', redirectTo: 'home', pathMatch: 'full' },

29 { path: 'home', component: HomeComponent },

30 { path: 'about', component: AboutComponent },

31 { path: 'contact', component: ContactComponent },

32 { path: 'contactus', redirectTo: 'contact' },

33

34 // authentication demo

35 { path: 'login', component: LoginComponent },

36 {

37 path: 'protected',

38 component: ProtectedComponent,

39 canActivate: [LoggedInGuard]

40 },

41

42 // nested

43 {

44 path: 'products',

45 component: ProductsComponent,

46 children: childRoutes

47 }

48];

Notice that products has a children parameter. Where does this come from? We’ve
defined the childRoutes in a new module: the ProductsModule. Let’s take a look:

ProductsModule

The ProductsModule will have its own route configuration:

Routing 299

code/routes/routing/src/app/products/products.module.ts

15 export const routes: Routes = [

16 { path: '', redirectTo: 'main', pathMatch: 'full' },

17 { path: 'main', component: MainComponent },

18 { path: 'more-info', component: MoreInfoComponent },

19 { path: ':id', component: ProductComponent },

20];

Notice here that we have an empty path on the first object. We do this so that when
we visit /products, we’ll be redirected to the main route.

The other route we need to look at is :id. In this case, when the user visits something
that doesn’t match any other route, it will fallback to this route. Everything that is
passed after / will be extracted to a parameter of the route, called id.

Now on the component template, we’ll have a link to each of those static child routes:

code/routes/routing/src/app/products/products.component.html

3 <div class="navLinks">

4 <a [routerLink]="['./main']">Main |

5 <a [routerLink]="['./more-info']">More Info |

You can see that the route links are all in the format ['./main'], with a preceding
./. This indicates that you want to navigate the Main route relative to the current
route context.

You could also declare the routes with the ['products', 'main'] notation. The
downside is that by doing it this way, the child route is aware of the parent route and
if you were to move this component around or reuse it, you would have to rewrite
your route links.

After the links, we’ll add an input where the user will be able to enter a product id,
along with a button to navigate to it, and lastly add our router-outlet:

Routing 300

code/routes/routing/src/app/products/products.component.html

1 <h2>Products</h2>

2

3 <div class="navLinks">

4 <a [routerLink]="['./main']">Main |

5 <a [routerLink]="['./more-info']">More Info |

6 Enter id: <input #id size="6">

7 <button (click)="goToProduct(id.value)">Go</button>

8 </div>

9

10 <div class="products-area">

11 <router-outlet></router-outlet>

12 </div>

Let’s look at the ProductsComponent definition:

code/routes/routing/src/app/products/products.component.ts

1 import { Component } from '@angular/core';

2 import {

3 ActivatedRoute,

4 Router

5 } from '@angular/router';

6

7 @Component({

8 selector: 'app-products',

9 templateUrl: './products.component.html',

10 styleUrls: ['./products.component.css']

11 })

12 export class ProductsComponent {

13 constructor(private router: Router, private route: ActivatedRoute) {

14 }

15

16 goToProduct(id: string): void {

17 this.router.navigate(['./', id], {relativeTo: this.route});

18 }

19 }

First on the constructor we’re declaring an instance variable for the Router, since
we’re going to use that instance to navigate to the product by id.

Routing 301

When we want to go to a particular product we use the goToProduct method. In
goToProduct we call the router’s navigate method and providing the route name
and an object with route parameters. In our case we’re just passing the id.

Notice that we use the relative ./ path in the navigate function. In order to use this
we also pass the relativeTo object to the options, which tells the router what that
route is relative to.

Now, if we run the application we will see the main page:

Nested Routes App

If you click on the Products link, you’ll be redirected to /products/main that will
render as follows:

Routing 302

Nested Routes App - Products Section

Everything below that thin grey line is being rendered using the main application’s
router-outlet.

And the contents of the dotted red line is being rendered inside the ProductCompo-
nent’s router-outlet. That’s how you indicate how the parent and child routes will
be rendered.

When we visit one of the product links, or if we enter an ID on the textbox and click
Go, the new content is rendered inside the ProductComponent’s outlet:

Routing 303

Nested Routes App - Product By Id

It’s also worth noting that the Angular router is smart enough to prioritize concrete
routes first (like /products/spotify) over the parameterized ones (like /prod-

ucts/123). This way /products/spotify will never be handled by the more generic,
catch-all route /products/:id.

Redirecting and linking nested routes

Just to recap, if we want to go to a route named MyRoute on your top-level routing
context, you use ['myRoute']. This will only work if you’re in that same top-level
context.

If you are on a child component, and you try to link or redirect to ['myRoute'], it will
try to find a sibling route, and error out. In this case, you need to use ['/myRoute']
with a leading slash.

In a similar way, if we are on the top-level context and we want to link or redirect to
a child route, we have to need to use multiple elements on the route definition array.

Let’s say we want to visit the Show route, which is a child of the Product route. In
this case, we use ['product', 'show'] as the route definition.

Routing 304

Summary

As we can see, the new Angular router is very powerful and flexible. Now go out
and route your apps!

Data Architecture in Angular
An Overview of Data Architecture

Managing data can be one of the trickiest aspects of writing a maintainable app.
There are tons of ways to get data into your application:

• AJAX HTTP Requests
• Websockets
• Indexdb
• LocalStorage
• Service Workers
• etc.

The problem of data architecture addresses questions like:

• How can we aggregate all of these different sources into a coherent system?
• How can we avoid bugs caused by unintended side-effects?
• How can we structure the code sensibly so that it’s easier to maintain and on-
board new team members?

• How can we make the app run as fast as possible when data changes?

For many years MVCwas a standard pattern for architecting data in applications: the
Models contained the domain logic, the View displayed the data, and the Controller
tied it all together. The problem is, we’ve learned that MVC doesn’t translate directly
into client-side web applications very well.

There has been a renaissance in the area of data architectures and many new ideas
are being explored. For instance:

Data Architecture in Angular 306

• MVW / Two-way data binding: Model-View-Whatever is a term used⁷¹ to
describe Angular 1’s default architecture. The $scope provides a two-way data-
binding - the whole application shares the same data structures and a change
in one area propagates to the rest of the app.

• Flux⁷²: uses a unidirectional data flow. In Flux, Stores hold data, Views render
what’s in the Store, and Actions change the data in the Store. There is a bit
more ceremony to setup Flux, but the idea is that because data only flows in
one direction, it’s easier to reason about.

• Observables: Observables give us streams of data. We subscribe to the streams
and then perform operations to react to changes. RxJs⁷³ is the most popular
reactive streams library for JavaScript and it gives us powerful operators for
composing operations on streams of data.

There are a lot of variations on these ideas. For instance:

• Flux is a pattern, and not an implementation. There are many
different implementations of Flux (just like there are many imple-
mentations of MVC)

• Immutability is a common variant on all of the above data architec-
tures.

• Falcor⁷⁴ is a powerful framework that helps bind your client-side
models to the server-side data. Falcor is often used with an Observ-
ables-type data architecture.

Data Architecture in Angular

Angular is extremely flexible in what it allows for data architecture. A data strategy
that works for one project doesn’t necessarily work for another. So Angular doesn’t
prescribe a particular stack, but instead tries to make it easy to use whatever
architecture we choose (while still retaining fast performance).

⁷¹See: Model View Whatever
⁷²https://facebook.github.io/flux/
⁷³https://github.com/Reactive-Extensions/RxJS
⁷⁴http://netflix.github.io/falcor/

https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS
http://netflix.github.io/falcor/
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS
http://netflix.github.io/falcor/

Data Architecture in Angular 307

The benefit of this is that you have flexibility to fit Angular into almost any situation.
The downside is that you have to make your own decisions about what’s right for
your project.

Don’t worry, we’re not going to leave you to make this decision on your own! In the
chapters that follow, we’re going to cover how to build applications using some of
these patterns.

Data Architecture with
Observables - Part 1: Services
Observables and RxJS

In Angular, we can structure our application to use Observables as the backbone
of our data architecture. Using Observables to structure our data is called Reactive
Programming.

But what are Observables, and Reactive Programming anyway? Reactive Program-
ming is a way to work with asynchronous streams of data. Observables are the main
data structure we use to implement Reactive Programming. But I’ll admit, those
terms may not be that clarifying. So we’ll look at concrete examples through the
rest of this chapter that should be more enlightening.

Note: Some RxJS Knowledge Required

I want to point out this book is not primarily about Reactive Programming.
There are several other good resources that can teach you the basics of Reactive
Programming and you should read them. We’ve listed a few below.

Consider this chapter a tutorial on how to work with RxJS and Angular rather
than an exhaustive introduction to RxJS and Reactive Programming.

In this chapter, I’ll explain in detail the RxJS concepts andAPIs thatwe encounter.
But know that you may need to supplement the content here with other resources if
RxJS is still new to you.

Data Architecture with Observables - Part 1: Services 309

Use of Underscore.js in this chapter

Underscore.js⁷⁵ is a popular library that provides functional operators on
JavaScript data structures such as Array and Object. We use it a bunch
in this chapter alongside RxJS. If you see the _ in code, such as _.map or
_.sortBy know that we’re using the Underscore.js library. You can find the
docs for Underscore.js here⁷⁶.

Learning Reactive Programming and RxJS

If you’re just learning RxJS I recommend that you read this article first:

• The introduction to Reactive Programming you’ve been missing⁷⁷ by Andre
Staltz

After you’ve become a bit more familiar with the concepts behind RxJS, here are a
few more links that can help you along the way:

• Which static operators to use to create streams?⁷⁸
• Which instance operators to use on streams?⁷⁹
• RxMarbles⁸⁰ - Interactive diagrams of the various operations on streams

Throughout this chapter I’ll provide links to the API documentation of RxJS. The RxJS
docs have tons of great example code that shed light on how the different streams
and operators work.

Do I have to use RxJS to use Angular? - No, you definitely don’t.
Observables are just one pattern out of many that you can use with
Angular. We talk more about other data patterns you can use here.

⁷⁵http://underscorejs.org/
⁷⁶http://underscorejs.org/
⁷⁷https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
⁷⁸https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
⁷⁹https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
⁸⁰http://rxmarbles.com

http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://rxmarbles.com/
http://underscorejs.org/
http://underscorejs.org/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://rxmarbles.com/

Data Architecture with Observables - Part 1: Services 310

I want to give you fair warning: learning RxJS can be a bit mind-bending at first.
But trust me, you’ll get the hang of it and it’s worth it. Here’s a few big ideas about
streams that you might find helpful:

1. Promises emit a single value whereas streams emit many values. - Streams
fulfill the same role in your application as promises. If you’ve made the jump
from callbacks to promises, you know that promises are a big improvement
in readability and data maintenance vs. callbacks. In the same way, streams
improve upon the promise pattern in that we can continuously respond to data
changes on a stream (vs. a one-time resolve from a promise)

2. Imperative code “pulls” data whereas reactive streams “push” data - In
Reactive Programming our code subscribes to be notified of changes and the
streams “push” data to these subscribers

3. RxJS is functional - If you’re a fan of functional operators like map, reduce,
and filter then you’ll feel right at home with RxJS because streams are, in
some sense, lists and so the powerful functional operators all apply

4. Streams are composable - Think of streams like a pipeline of operations over
your data. You can subscribe to any part of your stream and even combine them
to create new streams

Chat App Overview

In this chapter, we’re going to use RxJS to build a chat app. Here’s a screenshot:

Data Architecture with Observables - Part 1: Services 311

Completed Chat Application

Usually we try to show every line of code here in the book text. However,
this chat application has a lot of moving parts, so in this chapter we’re not
going to have every single line of code in the text. You can find the sample
code for this chapter in the folder code/rxjs/rxjs-chat. We’ll call out each
filter where you can view the context, where appropriate.

In this application we’ve provided a few bots you can chat with. Open up the code
and try it out:

cd code/rxjs/rxjs-chat

npm install

npm start

Now open your browser to http://localhost:4200.

Data Architecture with Observables - Part 1: Services 312

Notice a few things about this application:

• You can click on the threads to chat with another person
• The bots will send you messages back, depending on their personality
• The unread message count in the top corner stays in sync with the number of
unread messages

Let’s look at an overview of how this app is constructed. We have

• 3 top-level Angular Components
• 3 models
• and 3 services

Let’s look at them one at a time.

Components

The page is broken down into three top-level components:

Data Architecture with Observables - Part 1: Services 313

Chat Top-Level Components

• ChatNavBarComponent - contains the unread messages count
• ChatThreadsComponent - shows a clickable list of threads, along with the most
recent message and the conversation avatar

• ChatWindowComponent - shows the messages in the current thread with an input
box to send new messages

Models

This application also has three models:

Data Architecture with Observables - Part 1: Services 314

Chat Models

• User - stores information about a chat participant
• Message - stores an individual message
• Thread - stores a collection of Messages as well as some data about the
conversation

Services

In this app, each of our models has a corresponding service. The services are singleton
objects that play two roles:

1. Provide streams of data that our application can subscribe to
2. Provide operations to add or modify data

For instance, the UsersService:

• publishes a stream that emits the current user and
• offers a setCurrentUser function which will set the current user (that is, emit
the current user from the currentUser stream)

Summary

At a high level, the application data architecture is straightforward:

• The services maintain streams which emit models (e.g. Messages)

Data Architecture with Observables - Part 1: Services 315

• The components subscribe to those streams and render according to the most
recent values

For instance, the ChatThreads component listens for the most recent list of threads
from the ThreadService and the ChatWindow subscribes for the most recent list of
messages.

In the rest of this chapter, we’re going to go in-depth on howwe implement this using
Angular and RxJS. We’ll start by implementing our models, then look at how we
create Services to manage our streams, and then finally implement the Components.

Implementing the Models

Let’s start with the easy stuff and take a look at the models.

User

Our User class is straightforward. We have an id, name, and avatarSrc.

code/rxjs/rxjs-chat/src/app/user/user.model.ts
1 import { uuid } from '../util/uuid';

2

3 /**

4 * A User represents an agent that sends messages

5 */

6 export class User {

7 id: string;

8

9 constructor(public name: string,

10 public avatarSrc: string) {

11 this.id = uuid();

12 }

13 }

Notice above that we’re using a TypeScript shorthand in the constructor.
When we say public name: string we’re telling TypeScript that 1. we
want name to be a public property on this class and 2. assign the argument
value to that property when a new instance is created.

Data Architecture with Observables - Part 1: Services 316

Thread

Similarly, Thread is also a straightforward TypeScript class:

code/rxjs/rxjs-chat/src/app/thread/thread.model.ts

1 import { Message } from '../message/message.model';

2 import { uuid } from '../util/uuid';

3

4 /**

5 * Thread represents a group of Users exchanging Messages

6 */

7 export class Thread {

8 id: string;

9 lastMessage: Message;

10 name: string;

11 avatarSrc: string;

12

13 constructor(id?: string,

14 name?: string,

15 avatarSrc?: string) {

16 this.id = id || uuid();

17 this.name = name;

18 this.avatarSrc = avatarSrc;

19 }

20 }

Note that we store a reference to the lastMessage in our Thread. This lets us show a
preview of the most recent message in the threads list.

Message

Message is also a simple TypeScript class, however in this case we use a slightly
different form of constructor:

Data Architecture with Observables - Part 1: Services 317

code/rxjs/rxjs-chat/src/app/message/message.model.ts

1 import { User } from '../user/user.model';

2 import { Thread } from '../thread/thread.model';

3 import { uuid } from './../util/uuid';

4

5 /**

6 * Message represents one message being sent in a Thread

7 */

8 export class Message {

9 id: string;

10 sentAt: Date;

11 isRead: boolean;

12 author: User;

13 text: string;

14 thread: Thread;

15

16 constructor(obj?: any) {

17 this.id = obj && obj.id || uuid();

18 this.isRead = obj && obj.isRead || false;

19 this.sentAt = obj && obj.sentAt || new Date();

20 this.author = obj && obj.author || null;

21 this.text = obj && obj.text || null;

22 this.thread = obj && obj.thread || null;

23 }

24 }

The pattern you see here in the constructor allows us to simulate using keyword
arguments in the constructor. Using this pattern, we can create a new Message using
whatever data we have available and we don’t have to worry about the order of the
arguments. For instance we could do this:

let msg1 = new Message();

or this

let msg2 = new Message({

text: "Hello Nate Murray!"

})

Now that we’ve looked at our models, let’s take a look at our first service: the
UsersService.

Data Architecture with Observables - Part 1: Services 318

Implementing UsersService

The point of the UsersService is to provide a place where our application can learn
about the current user and also notify the rest of the application if the current user
changes.

The first thing we need to do is create a TypeScript class and add the @Injectable

decorator.

code/rxjs/rxjs-chat/src/app/user/users.service.ts

10 export class UsersService {

11 // `currentUser` contains the current user

12 currentUser: Subject<User> = new BehaviorSubject<User>(null);

13

14 public setCurrentUser(newUser: User): void {

15 this.currentUser.next(newUser);

16 }

17 }

We make a class that we will be able to use as a dependency to other com-
ponents in our application. Briefly, two benefits of dependency-injection
are:

1. we let Angular handle the lifecycle of the object and
2. it’s easier to test injected components.

We talk more about @Injectable in the chapter on dependency injection,
but the result is that we can now inject other dependencies into our
constructor like so:

class UsersService {

constructor(public someOtherService: SomeOtherService) {

// do something with `someOtherService` here

}

}

Data Architecture with Observables - Part 1: Services 319

currentUser stream

Next we setup a stream which we will use to manage our current user:

code/rxjs/rxjs-chat/src/app/user/users.service.ts

12 currentUser: Subject<User> = new BehaviorSubject<User>(null);

There’s a lot going on here, so let’s break it down:

• We’re defining an instance variable currentUser which is a Subject stream.
• Concretely, currentUser is a BehaviorSubject which will contain User.
• However, the first value of this stream is null (the constructor argument).

If you haven’t worked with RxJS much, then you may not know what Subject or
BehaviorSubject are. You can think of a Subject as a “read/write” stream.

Technically a Subject⁸¹ inherits from both Observable⁸² and Observer⁸³

One consequence of streams is that, because messages are published immediately,
a new subscriber risks missing the latest value of the stream. BehaviourSubject
compensates for this.

BehaviourSubject⁸⁴ has a special property in that it stores the last value. Meaning
that any subscriber to the stream will receive the latest value. This is great for us
because it means that any part of our application can subscribe to the UsersSer-

vice.currentUser stream and immediately know who the current user is.

Setting a new user

Weneed away to publish a new user to the streamwhenever the current user changes
(e.g. logging in).

There’s two ways we can expose an API for doing this:

⁸¹https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
⁸²https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
⁸³https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
⁸⁴https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md

Data Architecture with Observables - Part 1: Services 320

1. Add new users to the stream directly:

The most straightforward way to update the current user is to have clients of the
UsersService simply publish a new User directly to the stream like this:

UsersService.currentUser.subscribe((newUser) => {

console.log('New User is: ', newUser.name);

})

// => New User is: originalUserName

let u = new User('Nate', 'anImgSrc');

UsersService.currentUser.next(u);

// => New User is: Nate

Note here that we use the next method on a Subject to push a new value
to the stream

The pro here is that we’re able to reuse the existing API from the stream, so we’re
not introducing any new code or APIs

2. Create a setCurrentUser(newUser: User) method

The other way we could update the current user is to create a helper method on the
UsersService like this:

code/rxjs/rxjs-chat/src/app/user/users.service.ts

14 public setCurrentUser(newUser: User): void {

15 this.currentUser.next(newUser);

16 }

You’ll notice that we’re still using the next method on the currentUser stream, so
why bother doing this?

Because there is value in decoupling the implementation of the currentUser from
the implementation of the stream. By wrapping the next in the setCurrentUser call

Data Architecture with Observables - Part 1: Services 321

we give ourselves room to change the implementation of the UsersService without
breaking our clients.

In this case, I wouldn’t recommend one method very strongly over the other, but it
can make a big difference on the maintainability of larger projects.

A third option could be to have the updates expose streams of their own
(that is, a stream where we place the action of changing the current user).
We explore this pattern in the MessagesService below.

UsersService.ts

Putting it together, our UsersService looks like this:

code/rxjs/rxjs-chat/src/app/user/users.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject, BehaviorSubject } from 'rxjs';

3 import { User } from './user.model';

4

5

6 /**

7 * UserService manages our current user

8 */

9 @Injectable()

10 export class UsersService {

11 // `currentUser` contains the current user

12 currentUser: Subject<User> = new BehaviorSubject<User>(null);

13

14 public setCurrentUser(newUser: User): void {

15 this.currentUser.next(newUser);

16 }

17 }

18

19 export const userServiceInjectables: Array<any> = [

20 UsersService

21];

Data Architecture with Observables - Part 1: Services 322

The MessagesService

The MessagesService is the backbone of this application. In our app, all messages
flow through the MessagesService.

Our MessagesService hasmuchmore sophisticated streams compared to our UsersSer-
vice. There are five streams that make up our MessagesService: 3 “data manage-
ment” streams and 2 “action” streams.

The three data management streams are:

• newMessages - emits each new Message only once
• messages - emits an array of the current Messages
• updates - performs operations on messages

the newMessages stream

newMessages is a Subject that will publish each new Message only once.

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

14 export class MessagesService {

15 // a stream that publishes new messages only once

16 newMessages: Subject<Message> = new Subject<Message>();

If we want, we can define a helper method to add Messages to this stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

90 addMessage(message: Message): void {

91 this.newMessages.next(message);

92 }

It would also be helpful to have a stream that will get all of the messages from a
thread that are not from a particular user. For instance, consider the Echo Bot:

Data Architecture with Observables - Part 1: Services 323

Real mature, Echo Bot

When we are implementing the Echo Bot, we don’t want to enter an infinite loop
and repeat back the bot’s messages to itself.

To implement this we can subscribe to the newMessages stream and filter out all
messages that are

1. part of this thread and
2. not written by the bot.

You can think of this as saying, for a given Thread I want a stream of the messages
that are “for” this User.

Data Architecture with Observables - Part 1: Services 324

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

94 messagesForThreadUser(thread: Thread, user: User): Observable<Message> {

95 return this.newMessages

96 .filter((message: Message) => {

97 // belongs to this thread

98 return (message.thread.id === thread.id) &&

99 // and isn't authored by this user

100 (message.author.id !== user.id);

101 });

102 }

messagesForThreadUser takes a Thread and a User and returns a new stream of
Messages that are filtered on that Thread and not authored by the User. That is, it
is a stream of “everyone else’s” messages in this Thread.

the messages stream

Whereas newMessages emits individual Messages, the messages stream emits an
Array of the most recent Messages.

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

19 messages: Observable<Message[]>;

The type Message[] is the same as Array<Message>. Another way of writing
the same thing would be: Observable<Array<Message>>. When we define
the type of messages to be Observable<Message[]> we mean that this
stream emits an Array (of Messages), not individual Messages.

So how does messages get populated? For that we need to talk about the updates

stream and a new pattern: the Operation stream.

The Operation Stream Pattern

Here’s the idea:

Data Architecture with Observables - Part 1: Services 325

• We’ll maintain state in messages which will hold an Array of the most current
Messages

• We use an updates stream which is a stream of functions to apply to messages

You can think of it this way: any function that is put on the updates stream will
change the list of the current messages. A function that is put on the updates stream
should accept a list of Messages and then return a list of Messages. Let’s formalize
this idea by creating an interface in code:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

9 interface IMessagesOperation extends Function {

10 (messages: Message[]): Message[];

11 }

Let’s define our updates stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

21 // `updates` receives _operations_ to be applied to our `messages`

22 // it's a way we can perform changes on *all* messages (that are currently

23 // stored in `messages`)

24 updates: Subject<any> = new Subject<any>();

Remember, updates receives operations that will be applied to our list of messages.
But how do we make that connection? We do (in the constructor of our Mes-

sagesService) like this:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

30 constructor() {

31 this.messages = this.updates

32 // watch the updates and accumulate operations on the messages

33 .scan((messages: Message[],

34 operation: IMessagesOperation) => {

35 return operation(messages);

36 },

37 initialMessages)

38 // make sure we can share the most recent list of messages across anyone

Data Architecture with Observables - Part 1: Services 326

This code introduces a new stream function: scan⁸⁵. If you’re familiar with functional
programming, scan is a lot like reduce: it runs the function for each element in the
incoming stream and accumulates a value. What’s special about scan is that it will
emit a value for each intermediate result. That is, it doesn’t wait for the stream to
complete before emitting a result, which is exactly what we want.

When we call this.updates.scan, we are creating a new stream that is subscribed
to the updates stream. On each pass, we’re given:

1. the messages we’re accumulating and
2. the new operation to apply.

and then we return the new Message[].

Sharing the Stream

One thing to know about streams is that they aren’t shareable by default. That is,
if one subscriber reads a value from a stream, it can be gone forever. In the case of
our messages, we want to 1. share the same stream among many subscribers and 2.
replay the last value for any subscribers who come “late”.

To do that, we use two operators: publishReplay and refCount.

• publishReplay let’s us share a subscription between multiple subscribers and
replay n number of values to future subscribers. (see publish⁸⁶ and replay⁸⁷)

• refCount⁸⁸ - makes it easier to use the return value of publish, by managing
when the observable will emit values

⁸⁵https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md
⁸⁶https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
⁸⁷https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
⁸⁸https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md

Data Architecture with Observables - Part 1: Services 327

Wait, so what does refCount do?

refCount can be a little tricky to understand because it relates to how one
manages “hot” and “cold” observables. We’re not going to dive deep into
explaining how this works and we direct the reader to:

• RxJS docs on refCount⁸⁹
• Introduction to Rx: Hot and Cold observables⁹⁰
• RefCount Marble Diagram⁹¹

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

32 // watch the updates and accumulate operations on the messages

33 .scan((messages: Message[],

34 operation: IMessagesOperation) => {

35 return operation(messages);

36 },

37 initialMessages)

38 // make sure we can share the most recent list of messages across anyone

39 // who's interested in subscribing and cache the last known list of

40 // messages

41 .publishReplay(1)

42 .refCount();

Adding Messages to the messages Stream

Now we could add a Message to the messages stream like so:

var myMessage = new Message(/* params here... */);

updates.next((messages: Message[]): Message[] => {

return messages.concat(myMessage);

})

⁸⁹https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
⁹⁰http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
⁹¹http://reactivex.io/documentation/operators/refcount.html

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html

Data Architecture with Observables - Part 1: Services 328

Above, we’re adding an operation to the updates stream. The effect is that messages
is “subscribed” to that stream and so it will apply that operation which will concat
our newMessage on to the accumulated list of messages.

It’s okay if this takes a few minutes to mull over. It can feel a little foreign
if you’re not used to this style of programming.

One problem with the above approach is that it’s a bit verbose to use. It would be
nice to not have to write that inner function every time. We could do something like
this:

addMessage(newMessage: Message) {

updates.next((messages: Message[]): Message[] => {

return messages.concat(newMessage);

})

}

// somewhere else

var myMessage = new Message(/* params here... */);

MessagesService.addMessage(myMessage);

This is a little bit better, but it’s not “the reactive way”. In part, because this action
of creating a message isn’t composable with other streams. (Also this method is
circumventing our newMessages stream. More on that later.)

A reactive way of creating a new message would be to have a stream that accepts
Messages to add to the list. Again, this can be a bit new if you’re not used to thinking
this way. Here’s how you’d implement it:

First we make an “action stream” called create. (The term “action stream” is only
meant to describe its role in our service. The stream itself is still a regular Subject):

Data Architecture with Observables - Part 1: Services 329

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

26 // action streams

27 create: Subject<Message> = new Subject<Message>();

Next, in our constructor we configure the create stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

58 this.create

59 .map(function(message: Message): IMessagesOperation {

60 return (messages: Message[]) => {

61 return messages.concat(message);

62 };

63 })

The map⁹² operator is a lot like the built-in Array.map function in JavaScript except
that it works on streams. That is, it runs the function once for each item in the stream
and emits the return value of the function.

In this case, we’re saying “for each Messagewe receive as input, return an IMessage-

sOperation that adds this message to the list”. Put another way, this stream will emit
a function which accepts the list of Messages and adds this Message to our list of
messages.

Now that we have the create stream, we still have one thing left to do: we need to
actually hook it up to the updates stream. We do that by using subscribe⁹³.

⁹²https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
⁹³https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

Data Architecture with Observables - Part 1: Services 330

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

58 this.create

59 .map(function(message: Message): IMessagesOperation {

60 return (messages: Message[]) => {

61 return messages.concat(message);

62 };

63 })

64 .subscribe(this.updates);

What we’re doing here is subscribing the updates stream to listen to the create

stream. This means that if create receives a Message it will emit an IMessagesOp-

eration that will be received by updates and then the Message will be added to
messages.

Here’s a diagram that shows our current situation:

Creating a new message, starting with the create stream

This is great because it means we get a few things:

1. The current list of messages from messages

2. A way to process operations on the current list of messages (via updates)
3. An easy-to-use stream to put create operations on our updates stream (via

create)

Data Architecture with Observables - Part 1: Services 331

Anywhere in our code, if we want to get the most current list of messages, we
just have to go to the messages stream. But we have a problem, we still haven’t
connected this flow to the newMessages stream.

It would be great if we had a way to easily connect this stream with any Message

that comes from newMessages. It turns out, it’s really easy:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

66 this.newMessages

67 .subscribe(this.create);

Now our diagram looks like this:

Creating a new message, starting with the newMessages stream

Now our flow is complete! It’s the best of both worlds: we’re able to subscribe to the
stream of individual messages through newMessages, but if we just want the most
up-to-date list, we can subscribe to messages.

Data Architecture with Observables - Part 1: Services 332

It’s worth pointing out some implications of this design: if you subscribe
to newMessages directly, you have to be careful about changes that may
happen downstream. Here are three things to consider:

First, you obviously won’t get any downstream updates that are applied to
the Messages.

Second, in this case, we havemutable Message objects. So if you subscribe
to newMessages and store a reference to a Message, that Message’s attributes
may change.

Third, in the case where you want to take advantage of the mutability of
our Messages you may not be able to. Consider the case where we could put
an operation on the updates queue that makes a copy of each Message and
then mutates the copy. (This is probably a better design than what we’re
doing here.) In this case, you couldn’t rely on any Message emitted directly
from newMessages being in its “final” state.

That said, as long as you keep these considerations in mind, you shouldn’t
have too much trouble.

Our completed MessagesService

Here’s what the completed MessagesService looks like:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject, Observable } from 'rxjs';

3 import { User } from '../user/user.model';

4 import { Thread } from '../thread/thread.model';

5 import { Message } from '../message/message.model';

6

7 const initialMessages: Message[] = [];

8

9 interface IMessagesOperation extends Function {

10 (messages: Message[]): Message[];

11 }

12

13 @Injectable()

14 export class MessagesService {

15 // a stream that publishes new messages only once

Data Architecture with Observables - Part 1: Services 333

16 newMessages: Subject<Message> = new Subject<Message>();

17

18 // `messages` is a stream that emits an array of the most up to date messages

19 messages: Observable<Message[]>;

20

21 // `updates` receives _operations_ to be applied to our `messages`

22 // it's a way we can perform changes on *all* messages (that are currently

23 // stored in `messages`)

24 updates: Subject<any> = new Subject<any>();

25

26 // action streams

27 create: Subject<Message> = new Subject<Message>();

28 markThreadAsRead: Subject<any> = new Subject<any>();

29

30 constructor() {

31 this.messages = this.updates

32 // watch the updates and accumulate operations on the messages

33 .scan((messages: Message[],

34 operation: IMessagesOperation) => {

35 return operation(messages);

36 },

37 initialMessages)

38 // make sure we can share the most recent list of messages across anyone

39 // who's interested in subscribing and cache the last known list of

40 // messages

41 .publishReplay(1)

42 .refCount();

43

44 // `create` takes a Message and then puts an operation (the inner function)

45 // on the `updates` stream to add the Message to the list of messages.

46 //

47 // That is, for each item that gets added to `create` (by using `next`)

48 // this stream emits a concat operation function.

49 //

50 // Next we subscribe `this.updates` to listen to this stream, which means

51 // that it will receive each operation that is created

52 //

53 // Note that it would be perfectly acceptable to simply modify the

54 // "addMessage" function below to simply add the inner operation function to

55 // the update stream directly and get rid of this extra action stream

56 // entirely. The pros are that it is potentially clearer. The cons are that

57 // the stream is no longer composable.

58 this.create

59 .map(function(message: Message): IMessagesOperation {

Data Architecture with Observables - Part 1: Services 334

60 return (messages: Message[]) => {

61 return messages.concat(message);

62 };

63 })

64 .subscribe(this.updates);

65

66 this.newMessages

67 .subscribe(this.create);

68

69 // similarly, `markThreadAsRead` takes a Thread and then puts an operation

70 // on the `updates` stream to mark the Messages as read

71 this.markThreadAsRead

72 .map((thread: Thread) => {

73 return (messages: Message[]) => {

74 return messages.map((message: Message) => {

75 // note that we're manipulating `message` directly here. Mutability

76 // can be confusing and there are lots of reasons why you might want

77 // to, say, copy the Message object or some other 'immutable' here

78 if (message.thread.id === thread.id) {

79 message.isRead = true;

80 }

81 return message;

82 });

83 };

84 })

85 .subscribe(this.updates);

86

87 }

88

89 // an imperative function call to this action stream

90 addMessage(message: Message): void {

91 this.newMessages.next(message);

92 }

93

94 messagesForThreadUser(thread: Thread, user: User): Observable<Message> {

95 return this.newMessages

96 .filter((message: Message) => {

97 // belongs to this thread

98 return (message.thread.id === thread.id) &&

99 // and isn't authored by this user

100 (message.author.id !== user.id);

101 });

102 }

103 }

Data Architecture with Observables - Part 1: Services 335

104

105 export const messagesServiceInjectables: Array<any> = [

106 MessagesService

107];

Trying out MessagesService

If you haven’t already, this would be a good time to open up the code and play around
with the MessagesService to get a feel for how it works. We’ve got an example you
can start with in code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts.

To run the tests in this project, open up your terminal then:

cd /path/to/code/rxjs/rxjs-chat // <-- your path will vary

npm install

npm run test

Let’s start by creating a few instances of our models to use:

code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts

1 import { MessagesService } from './messages.service';

2

3 import { Message } from './message.model';

4 import { Thread } from './../thread/thread.model';

5 import { User } from './../user/user.model';

6

7 describe('MessagesService', () => {

8 it('should test', () => {

9

10 const user: User = new User('Nate', '');

11 const thread: Thread = new Thread('t1', 'Nate', '');

12 const m1: Message = new Message({

13 author: user,

14 text: 'Hi!',

15 thread: thread

16 });

17

Data Architecture with Observables - Part 1: Services 336

18 const m2: Message = new Message({

19 author: user,

20 text: 'Bye!',

21 thread: thread

22 });

Next let’s subscribe to a couple of our streams:

code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts

24 const messagesService: MessagesService = new MessagesService();

25

26 // listen to each message indivdually as it comes in

27 messagesService.newMessages

28 .subscribe((message: Message) => {

29 console.log('=> newMessages: ' + message.text);

30 });

31

32 // listen to the stream of most current messages

33 messagesService.messages

34 .subscribe((messages: Message[]) => {

35 console.log('=> messages: ' + messages.length);

36 });

37

38 messagesService.addMessage(m1);

39 messagesService.addMessage(m2);

40

41 // => messages: 1

42 // => newMessages: Hi!

43 // => messages: 2

44 // => newMessages: Bye!

45 });

46

47

48 });

Notice that even thoughwe subscribed to newMessages first and newMessages is called
directly by addMessage, our messages subscription is logged first. The reason for
this is because messages subscribed to newMessages earlier than our subscription in
this test (when MessagesService was instantiated). (You shouldn’t be relying on the
ordering of independent streams in your code, but why it works this way is worth
thinking about.)

Data Architecture with Observables - Part 1: Services 337

Play around with the MessagesService and get a feel for the streams there. We’re
going to be using them in the next section where we build the ThreadsService.

The ThreadsService

On our ThreadsService were going to define four streams that emit respectively:

1. A map of the current set of Threads (in threads)
2. A chronological list of Threads, newest-first (in orderedthreads)
3. The currently selected Thread (in currentThread)
4. The list of Messages for the currently selected Thread (in currentThreadMes-

sages)

Let’s walk through how to build each of these streams, and we’ll learn a little more
about RxJS along the way.

A map of the current set of Threads (in threads)

Let’s start by defining our ThreadsService class and the instance variable that will
emit the Threads:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject, BehaviorSubject, Observable } from 'rxjs/Rx';

3 import { Thread } from './thread.model';

4 import { Message } from '../message/message.model';

5 import { MessagesService } from '../message/messages.service';

6 import * as _ from 'lodash';

7

8 @Injectable()

9 export class ThreadsService {

10

11 // `threads` is a observable that contains the most up to date list of threads

12 threads: Observable<{ [key: string]: Thread }>;

Data Architecture with Observables - Part 1: Services 338

Notice that this stream will emit a map (an object) with the id of the Thread being
the string key and the Thread itself will be the value.

To create a stream that maintains the current list of threads, we start by attaching to
the messagesService.messages stream:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

12 threads: Observable<{ [key: string]: Thread }>;

Recall that each time a new Message is added to the steam, messages will emit an
array of the current Messages. We’re going to look at each Message and we want to
return a unique list of the Threads.

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

27 this.threads = messagesService.messages

28 .map((messages: Message[]) => {

29 const threads: {[key: string]: Thread} = {};

30 // Store the message's thread in our accumulator `threads`

31 messages.map((message: Message) => {

32 threads[message.thread.id] = threads[message.thread.id] ||

33 message.thread;

Notice above that each time we will create a new list of threads. The reason for this
is because wemight delete somemessages down the line (e.g. leave the conversation).
Because we’re recalculating the list of threads each time, we naturally will “delete”
a thread if it has no messages.

In the threads list, we want to show a preview of the chat by using the text of the
most recent Message in that Thread.

Data Architecture with Observables - Part 1: Services 339

List of Threads with Chat Preview

In order to do that, we’ll store the most recent Message for each Thread. We know
which Message is newest by comparing the sentAt times:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

34 // Cache the most recent message for each thread

35 const messagesThread: Thread = threads[message.thread.id];

36 if (!messagesThread.lastMessage ||

37 messagesThread.lastMessage.sentAt < message.sentAt) {

38 messagesThread.lastMessage = message;

39 }

40 });

41 return threads;

42 });

Putting it all together, threads looks like this:

Data Architecture with Observables - Part 1: Services 340

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

27 this.threads = messagesService.messages

28 .map((messages: Message[]) => {

29 const threads: {[key: string]: Thread} = {};

30 // Store the message's thread in our accumulator `threads`

31 messages.map((message: Message) => {

32 threads[message.thread.id] = threads[message.thread.id] ||

33 message.thread;

34

35 // Cache the most recent message for each thread

36 const messagesThread: Thread = threads[message.thread.id];

37 if (!messagesThread.lastMessage ||

38 messagesThread.lastMessage.sentAt < message.sentAt) {

39 messagesThread.lastMessage = message;

40 }

41 });

42 return threads;

43 });

Trying out the ThreadsService

Let’s try out our ThreadsService. First we’ll create a few models to work with:

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

1 import { Message } from './../message/message.model';

2 import { Thread } from './thread.model';

3 import { User } from './../user/user.model';

4

5 import { ThreadsService } from './threads.service';

6 import { MessagesService } from './../message/messages.service';

7 import * as _ from 'lodash';

8

9 describe('ThreadsService', () => {

10 it('should collect the Threads from Messages', () => {

11

12 const nate: User = new User('Nate Murray', '');

13 const felipe: User = new User('Felipe Coury', '');

14

15 const t1: Thread = new Thread('t1', 'Thread 1', '');

16 const t2: Thread = new Thread('t2', 'Thread 2', '');

17

Data Architecture with Observables - Part 1: Services 341

18 const m1: Message = new Message({

19 author: nate,

20 text: 'Hi!',

21 thread: t1

22 });

23

24 const m2: Message = new Message({

25 author: felipe,

26 text: 'Where did you get that hat?',

27 thread: t1

28 });

29

30 const m3: Message = new Message({

31 author: nate,

32 text: 'Did you bring the briefcase?',

33 thread: t2

34 });

Now let’s create an instance of our services:

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

36 const messagesService: MessagesService = new MessagesService();

37 const threadsService: ThreadsService = new ThreadsService(messagesService);

Notice here that we’re passing messagesService as an argument to the
constructor of our ThreadsService. Normally we let the Dependency
Injection system handle this for us. But in our test, we can provide the
dependencies ourselves.

Let’s subscribe to threads and log out what comes through:

Data Architecture with Observables - Part 1: Services 342

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

37 const threadsService: ThreadsService = new ThreadsService(messagesService);

38

39 threadsService.threads

40 .subscribe((threadIdx: { [key: string]: Thread }) => {

41 const threads: Thread[] = _.values(threadIdx);

42 const threadNames: string = _.map(threads, (t: Thread) => t.name)

43 .join(', ');

44 console.log(`=> threads (${threads.length}): ${threadNames} `);

45 });

46

47 messagesService.addMessage(m1);

48 messagesService.addMessage(m2);

49 messagesService.addMessage(m3);

50

51 // => threads (1): Thread 1

52 // => threads (1): Thread 1

53 // => threads (2): Thread 1, Thread 2

54

55 });

56 });

A chronological list of Threads, newest-first (in
orderedthreads)

threads gives us a map which acts as an “index” of our list of threads. But we want
the threads view to be ordered according to the most recent message.

Data Architecture with Observables - Part 1: Services 343

Time Ordered List of Threads

Let’s create a new stream that returns an Array of Threads ordered by themost recent
Message time:

We’ll start by defining orderedThreads as an instance property:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts
14 // `orderedThreads` contains a newest-first chronological list of threads

15 orderedThreads: Observable<Thread[]>;

Next, in the constructorwe’ll define orderedThreads by subscribing to threads and
ordered by the most recent message:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts
45 this.orderedThreads = this.threads

46 .map((threadGroups: { [key: string]: Thread }) => {

47 const threads: Thread[] = _.values(threadGroups);

48 return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

49 });

The currently selected Thread (in currentThread)

Our application needs to know which Thread is the currently selected thread. This
lets us know:

Data Architecture with Observables - Part 1: Services 344

1. which thread should be shown in the messages window
2. which thread should be marked as the current thread in the list of threads

The current thread is marked by a dot symbol

Let’s create a BehaviorSubject that will store the currentThread:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

17 // `currentThread` contains the currently selected thread

18 currentThread: Subject<Thread> =

19 new BehaviorSubject<Thread>(new Thread());

Notice that we’re issuing an empty Thread as the default value. We don’t need to
configure the currentThread any further.

Setting the Current Thread

To set the current thread we can have clients either

1. submit new threads via next directly or
2. add a helper method to do it.

Let’s define a helper method setCurrentThread that we can use to set the next thread:

Data Architecture with Observables - Part 1: Services 345

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

70 setCurrentThread(newThread: Thread): void {

71 this.currentThread.next(newThread);

72 }

Marking the Current Thread as Read

We want to keep track of the number of unread messages. If we switch to a new
Thread then we want to mark all of the Messages in that Thread as read. We have the
parts we need to do this:

1. The messagesService.markThreadAsRead accepts a Thread and then will mark
all Messages in that Thread as read

2. Our currentThread emits a single Thread that represents the current Thread

So all we need to do is hook them together:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

67 this.currentThread.subscribe(this.messagesService.markThreadAsRead);

The list of Messages for the currently selected Thread (in
currentThreadMessages)

Now that we have the currently selected thread, we need to make sure we can show
the list of Messages in that Thread.

Data Architecture with Observables - Part 1: Services 346

The current list of messages is for the Reverse Bot

Implementing this is a little bit more complicated than it may seem at the surface.
Say we implemented it like this:

var theCurrentThread: Thread;

this.currentThread.subscribe((thread: Thread) => {

theCurrentThread = thread;

})

this.currentThreadMessages.map(

(messages: Message[]) => {

return _.filter(messages,

(message: Message) => {

return message.thread.id == theCurrentThread.id;

})

})

What’s wrong with this approach? Well, if the currentThread changes, current-
ThreadMessages won’t know about it and so we’ll have an outdated list of current-
ThreadMessages!

What if we reversed it, and stored the current list of messages in a variable and
subscribed to the changing of currentThread? We’d have the same problem only

Data Architecture with Observables - Part 1: Services 347

this time we would know when the thread changes but not when a new message
came in.

How can we solve this problem?

It turns out, RxJS has a set of operators that we can use to combinemultiple streams.
In this case we want to say “if either currentThread or messagesService.messages
changes, then we want to emit something.” For this we use the combineLatest⁹⁴
operator.

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

51 this.currentThreadMessages = this.currentThread

52 .combineLatest(messagesService.messages,

53 (currentThread: Thread, messages: Message[]) => {

When we’re combining two streams one or the other will arrive first and there’s no
guarantee that we’ll have a value on both streams, so we need to check to make sure
we have what we need otherwise we’ll just return an empty list.

Now that we have both the current thread and messages, we can filter out just the
messages we’re interested in:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

51 this.currentThreadMessages = this.currentThread

52 .combineLatest(messagesService.messages,

53 (currentThread: Thread, messages: Message[]) => {

54 if (currentThread && messages.length > 0) {

55 return _.chain(messages)

56 .filter((message: Message) =>

57 (message.thread.id === currentThread.id))

One other detail, since we’re already looking at the messages for the current thread,
this is a convenient area to mark these messages as read.

⁹⁴https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

Data Architecture with Observables - Part 1: Services 348

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts
55 return _.chain(messages)

56 .filter((message: Message) =>

57 (message.thread.id === currentThread.id))

58 .map((message: Message) => {

59 message.isRead = true;

60 return message; })

61 .value();

Whether or not we should be marking messages as read here is debatable.
The biggest drawback is that we’re mutating objects in what is, essentially,
a “read” thread. i.e. this is a read operation with a side effect, which is gen-
erally a Bad Idea. That said, in this application the currentThreadMessages
only applies to the currentThread and the currentThread should always
have its messages marked as read. That said, the “read with side-effects” is
not a pattern I recommend in general.

Putting it together, here’s what currentThreadMessages looks like:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts
51 this.currentThreadMessages = this.currentThread

52 .combineLatest(messagesService.messages,

53 (currentThread: Thread, messages: Message[]) => {

54 if (currentThread && messages.length > 0) {

55 return _.chain(messages)

56 .filter((message: Message) =>

57 (message.thread.id === currentThread.id))

58 .map((message: Message) => {

59 message.isRead = true;

60 return message; })

61 .value();

62 } else {

63 return [];

64 }

65 });

Our Completed ThreadsService

Here’s what our ThreadsService looks like:

Data Architecture with Observables - Part 1: Services 349

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

1 import { Injectable } from '@angular/core';

2 import { Subject, BehaviorSubject, Observable } from 'rxjs/Rx';

3 import { Thread } from './thread.model';

4 import { Message } from '../message/message.model';

5 import { MessagesService } from '../message/messages.service';

6 import * as _ from 'lodash';

7

8 @Injectable()

9 export class ThreadsService {

10

11 // `threads` is a observable that contains the most up to date list of threads

12 threads: Observable<{ [key: string]: Thread }>;

13

14 // `orderedThreads` contains a newest-first chronological list of threads

15 orderedThreads: Observable<Thread[]>;

16

17 // `currentThread` contains the currently selected thread

18 currentThread: Subject<Thread> =

19 new BehaviorSubject<Thread>(new Thread());

20

21 // `currentThreadMessages` contains the set of messages for the currently

22 // selected thread

23 currentThreadMessages: Observable<Message[]>;

24

25 constructor(public messagesService: MessagesService) {

26

27 this.threads = messagesService.messages

28 .map((messages: Message[]) => {

29 const threads: {[key: string]: Thread} = {};

30 // Store the message's thread in our accumulator `threads`

31 messages.map((message: Message) => {

32 threads[message.thread.id] = threads[message.thread.id] ||

33 message.thread;

34

35 // Cache the most recent message for each thread

36 const messagesThread: Thread = threads[message.thread.id];

37 if (!messagesThread.lastMessage ||

38 messagesThread.lastMessage.sentAt < message.sentAt) {

39 messagesThread.lastMessage = message;

40 }

41 });

42 return threads;

43 });

Data Architecture with Observables - Part 1: Services 350

44

45 this.orderedThreads = this.threads

46 .map((threadGroups: { [key: string]: Thread }) => {

47 const threads: Thread[] = _.values(threadGroups);

48 return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

49 });

50

51 this.currentThreadMessages = this.currentThread

52 .combineLatest(messagesService.messages,

53 (currentThread: Thread, messages: Message[]) => {

54 if (currentThread && messages.length > 0) {

55 return _.chain(messages)

56 .filter((message: Message) =>

57 (message.thread.id === currentThread.id))

58 .map((message: Message) => {

59 message.isRead = true;

60 return message; })

61 .value();

62 } else {

63 return [];

64 }

65 });

66

67 this.currentThread.subscribe(this.messagesService.markThreadAsRead);

68 }

69

70 setCurrentThread(newThread: Thread): void {

71 this.currentThread.next(newThread);

72 }

73

74 }

75

76 export const threadsServiceInjectables: Array<any> = [

77 ThreadsService

78];

Data Model Summary

Our data model and services are complete! Now we have everything we need now to
start hooking it up to our view components! In the next chapter we’ll build out our
3 major components to render and interact with these streams.

Data Architecture with
Observables - Part 2: View
Components
Building Our Views: The AppComponent Top-Level
Component

Let’s turn our attention to our app and implement our view components.

For the sake of clarity and space, in the following sections I’ll be leaving
out some import statements, CSS, and a few other similar lines of code. If
you’re curious about each line of those details, open up the sample code
because it contains everything we need to run this app.

The first thing we’re going to do is create our top-level component chat-app

As we talked about earlier, the page is broken down into three top-level components:

Data Architecture with Observables - Part 2: View Components 352

Chat Top-Level Components

• ChatNavBarComponent - contains the unread messages count
• ChatThreadsComponent - shows a clickable list of threads, along with the most
recent message and the conversation avatar

• ChatWindowComponent - shows the messages in the current thread with an input
box to send new messages

Here’s what our top-level component looks like in code:

Data Architecture with Observables - Part 2: View Components 353

code/rxjs/rxjs-chat/src/app/app.component.ts

1 import { Component, Inject } from '@angular/core';

2 import { ChatExampleData } from './data/chat-example-data';

3

4 import { UsersService } from './user/users.service';

5 import { ThreadsService } from './thread/threads.service';

6 import { MessagesService } from './message/messages.service';

7

8 @Component({

9 selector: 'app-root',

10 templateUrl: './app.component.html',

11 styleUrls: ['./app.component.css']

12 })

13 export class AppComponent {

14 constructor(public messagesService: MessagesService,

15 public threadsService: ThreadsService,

16 public usersService: UsersService) {

17 ChatExampleData.init(messagesService, threadsService, usersService);

18 }

19 }

and the template:

code/rxjs/rxjs-chat/src/app/app.component.html

1 <div>

2 <chat-page></chat-page>

3 </div>

In this chapter we are adding some style using the CSS framework
Bootstrap⁹⁵

Take a look at the constructor. Here we’re injecting our three services: the Mes-

sagesService, ThreadsService, and UsersService. We’re using those services to
initialize our example data.

If you’re interested in the example data you can find it in
code/rxjs/rxjs-chat/src/app/data/chat-example-data.ts.

⁹⁵http://getbootstrap.com

http://getbootstrap.com/
http://getbootstrap.com/

Data Architecture with Observables - Part 2: View Components 354

We’ll build our chat-page in a moment, but first let’s build our thread list in the
ChatThreadsComponent.

The ChatThreadsComponent

Time Ordered List of Threads

code/rxjs/rxjs-chat/src/app/chat-threads/chat-threads.component.ts

1 import {

2 Component,

3 OnInit,

4 Inject

5 } from '@angular/core';

6 import { Observable } from 'rxjs';

7 import { Thread } from '../thread/thread.model';

8 import { ThreadsService } from './../thread/threads.service';

9

10 @Component({

11 selector: 'chat-threads',

12 templateUrl: './chat-threads.component.html',

13 styleUrls: ['./chat-threads.component.css']

14 })

15 export class ChatThreadsComponent {

16 threads: Observable<any>;

Data Architecture with Observables - Part 2: View Components 355

17

18 constructor(public threadsService: ThreadsService) {

19 this.threads = threadsService.orderedThreads;

20 }

21 }

Here we’re injecting ThreadsService and then we’re keeping a reference to the
orderedThreads .

ChatThreadsComponent template

Lastly, let’s look at the template and its configuration:

code/rxjs/rxjs-chat/src/app/chat-threads/chat-threads.component.html

1 <!-- conversations -->

2 <div class="row">

3 <div class="conversation-wrap">

4

5 <chat-thread

6 *ngFor="let thread of threads | async"

7 [thread]="thread">

8 </chat-thread>

9

10 </div>

11 </div>

There’s three things to look at here: NgFor with the async pipe, the ChangeDetec-

tionStrategy and ChatThreadComponent.

The ChatThreadComponent directive component (which matches chat-thread in the
markup) will show the view for the Threads. We’ll define that in a moment.

The NgFor iterates over our threads, and passes the input [thread] to our ChatThread-
Component directive. But you probably notice something new in our *ngFor: the pipe
to async.

async is implemented by AsyncPipe and it lets us use an RxJS Observable here in our
view. What’s great about async is that it lets us use our async observable as if it was
a sync collection. This is super convenient and really cool.

Data Architecture with Observables - Part 2: View Components 356

On this component we specify a custom changeDetection. Angular has a flexible and
efficient change detection system. One of the benefits is that if we have a component
which has immutable or observable bindings, then we’re able to give the change
detection system hints that will make our application run very efficiently.

We talk more about various change-detection strategies in the Advanced
Components Chapter

In this case, instead of watching for changes on an array of Threads, Angular will
subscribe for changes to the threads observable - and trigger an update when a new
event is emitted.

The Single ChatThreadComponent

Let’s look at our ChatThreadComponent. This is the component that will be used to
display a single thread. Starting with the @Component:

code/rxjs/rxjs-chat/src/app/chat-thread/chat-thread.component.ts

1 import {

2 Component,

3 OnInit,

4 Input,

5 Output,

6 EventEmitter

7 } from '@angular/core';

8 import { Observable } from 'rxjs';

9 import { ThreadsService } from './../thread/threads.service';

10 import { Thread } from '../thread/thread.model';

11

12 @Component({

13 selector: 'chat-thread',

14 templateUrl: './chat-thread.component.html',

15 styleUrls: ['./chat-thread.component.css']

16 })

17 export class ChatThreadComponent implements OnInit {

18 @Input() thread: Thread;

19 selected = false;

20

Data Architecture with Observables - Part 2: View Components 357

21 constructor(public threadsService: ThreadsService) {

22 }

23

24 ngOnInit(): void {

25 this.threadsService.currentThread

26 .subscribe((currentThread: Thread) => {

27 this.selected = currentThread &&

28 this.thread &&

29 (currentThread.id === this.thread.id);

30 });

31 }

32

33 clicked(event: any): void {

34 this.threadsService.setCurrentThread(this.thread);

35 event.preventDefault();

36 }

37 }

We’ll come back and look at the template in a minute, but first let’s look at the
component definition controller.

ChatThreadComponent Controller and ngOnInit

Notice that we’re implementing a new interface here: OnInit. Angular components
can declare that they listen for certain lifecycle events. We talk more about lifecycle
events here in the Advanced Components chapter.

In this case, because we declared that we implement OnInit, the method ngOnInit

will be called on our component after the component has been checked for changes
the first time.

A key reason we will use ngOnInit is because our thread property won’t be
available in the constructor.

Above you can see that in ngOnInitwe subscribe to threadsService.currentThread
and if the currentThread matches the thread property of this component, we set
selected to true (conversely, if the Thread doesn’t match, we set selected to false).

We also setup an event handler clicked. This is how we handle selecting the current
thread. In our template (below), we will bind clicked() to clicking on the thread
view. If we receive clicked() then we tell the threadsService we want to set the
current thread to the Thread of this component.

Data Architecture with Observables - Part 2: View Components 358

ChatThreadComponent template

Here’s the code for our template:

code/rxjs/rxjs-chat/src/app/chat-thread/chat-thread.component.html

1 <div class="media conversation">

2 <div class="pull-left">

3 <img class="media-object avatar"

4 src="{{thread.avatarSrc}}">

5 </div>

6 <div class="media-body">

7 <h5 class="media-heading contact-name">{{thread.name}}

8 •

9 </h5>

10 <small class="message-preview">{{thread.lastMessage.text}}</small>

11 </div>

12 <a (click)="clicked($event)" class="div-link">Select

13 </div>

Noticewe’ve got some straight-forward bindings like {{thread.avatarSrc}}, {{thread.name}},
and {{thread.lastMessage.text}}.

We’ve got an *ngIf which will show the • symbol only if this is the selected
thread.

Lastly, we’re binding to the (click) event to call our clicked() handler. Notice that
when we call clicked we’re passing the argument $event. This is a special variable
provided by Angular that describes the event. We use that in our clicked handler
by calling event.preventDefault();. This makes sure that we don’t navigate to a
different page.

The ChatWindowComponent

The ChatWindowComponent is the most complicated component in our app. Let’s take
it one section at a time:

Data Architecture with Observables - Part 2: View Components 359

The Chat Window

We start by defining our @Component:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

17 @Component({

18 selector: 'chat-window',

19 templateUrl: './chat-window.component.html',

20 styleUrls: ['./chat-window.component.css'],

21 changeDetection: ChangeDetectionStrategy.OnPush

ChatWindowComponent Class Properties

Our ChatWindowComponent class has four properties :

Data Architecture with Observables - Part 2: View Components 360

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

23 export class ChatWindowComponent implements OnInit {

24 messages: Observable<any>;

25 currentThread: Thread;

26 draftMessage: Message;

27 currentUser: User;

Here’s a diagram of where each one is used:

Chat Window Properties

In our constructor we’re going to inject four things:

Data Architecture with Observables - Part 2: View Components 361

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

29 constructor(public messagesService: MessagesService,

30 public threadsService: ThreadsService,

31 public UsersService: UsersService,

32 public el: ElementRef) {

33 }

The first three are our services. The fourth, el is an ElementRef which we can use to
get access to the host DOM element. We’ll use that when we scroll to the bottom of
the chat window when we create and receive new messages.

Remember: by using public messagesService: MessagesService in the
constructor, we are not only injecting the MessagesService but set-
ting up an instance variable that we can use later in our class via
this.messagesService

ChatWindowComponent ngOnInit

We’re going to put the initialization of this component in ngOnInit. The main thing
we’re going to be doing here is setting up the subscriptions on our observables which
will then change our component properties.

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

35 ngOnInit(): void {

36 this.messages = this.threadsService.currentThreadMessages;

37

38 this.draftMessage = new Message();

First, we’ll save the currentThreadMessages into messages. Next we create an empty
Message for the default draftMessage.

When we send a new message we need to make sure that Message stores a reference
to the sending Thread. The sending thread is always going to be the current thread,
so let’s store a reference to the currently selected thread:

Data Architecture with Observables - Part 2: View Components 362

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts
40 this.threadsService.currentThread.subscribe(

41 (thread: Thread) => {

42 this.currentThread = thread;

43 });

We also want new messages to be sent from the current user, so let’s do the same
with currentUser:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts
45 this.UsersService.currentUser

46 .subscribe(

47 (user: User) => {

48 this.currentUser = user;

49 });

ChatWindowComponent sendMessage

Since we’re talking about it, let’s implement a sendMessage function that will send a
new message:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts
65 sendMessage(): void {

66 const m: Message = this.draftMessage;

67 m.author = this.currentUser;

68 m.thread = this.currentThread;

69 m.isRead = true;

70 this.messagesService.addMessage(m);

71 this.draftMessage = new Message();

72 }

The sendMessage function above takes the draftMessage, sets the author and thread

using our component properties. Every message we send has “been read” already (we
wrote it) so we mark it as read.

Notice here that we’re not updating the draftMessage text. That’s because we’re
going to bind the value of the messages text in the view in a few minutes.

After we’ve updated the draftMessage properties we send it off to the messagesSer-
vice and then create a new Message and set that new Message to this.draftMessage.
We do this to make sure we don’t mutate an already sent message.

Data Architecture with Observables - Part 2: View Components 363

ChatWindowComponent onEnter

In our view, we want to send the message in two scenarios

1. the user hits the “Send” button or
2. the user hits the Enter (or Return) key.

Let’s define a function that will handle that event:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

60 onEnter(event: any): void {

61 this.sendMessage();

62 event.preventDefault();

63 }

ChatWindowComponent scrollToBottom

When we send a message, or when a new message comes in, we want to scroll to the
bottom of the chat window. To do that, we’re going to set the scrollTop property of
our host element:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

74 scrollToBottom(): void {

75 const scrollPane: any = this.el

76 .nativeElement.querySelector('.msg-container-base');

77 scrollPane.scrollTop = scrollPane.scrollHeight;

78 }

Now that we have a function that will scroll to the bottom, we have to make sure
that we call it at the right time. Back in ngOnInit let’s subscribe to the list of
currentThreadMessages and scroll to the bottom anytime we get a new message:

Data Architecture with Observables - Part 2: View Components 364

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts
50 this.messages

51 .subscribe(

52 (messages: Array<Message>) => {

53 setTimeout(() => {

54 this.scrollToBottom();

55 });

56 });

57 }

Why do we have the setTimeout?

If we call scrollToBottom immediately when we get a new message then
what happens is we scroll to the bottom before the newmessage is rendered.
By using a setTimeout we’re telling JavaScript that we want to run this
function when it is finished with the current execution queue. This happens
after the component is rendered, so it does what we want.

ChatWindowComponent template

The opening of our template should look familiar, we start by defining some markup
and the panel header:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html
1 <div class="chat-window-container">

2 <div class="chat-window">

3 <div class="panel-container">

4 <div class="panel panel-default">

5

6 <div class="panel-heading top-bar">

7 <div class="panel-title-container">

8 <h3 class="panel-title">

9

10 Chat - {{currentThread.name}}

11 </h3>

12 </div>

13 <div class="panel-buttons-container">

14 <!-- you could put minimize or close buttons here -->

15 </div>

16 </div>

Data Architecture with Observables - Part 2: View Components 365

Next we show the list of messages. Here we use ngFor along with the async pipe
to iterate over our list of messages. We’ll describe the individual chat-message
component in a minute.

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html

18 <div class="panel-body msg-container-base">

19 <chat-message

20 *ngFor="let message of messages | async"

21 [message]="message">

22 </chat-message>

23 </div>

Lastly we have the message input box and closing tags :

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html

24 <div class="panel-footer">

25 <div class="input-group">

26 <input type="text"

27 class="chat-input"

28 placeholder="Write your message here..."

29 (keydown.enter)="onEnter($event)"

30 [(ngModel)]="draftMessage.text" />

31

32 <button class="btn-chat"

33 (click)="onEnter($event)"

34 >Send</button>

35

36 </div>

37 </div>

38

39 </div>

40 </div>

41 </div>

The message input box is the most interesting part of this view, so let’s talk about
two interesting properties: 1. (keydown.enter) and 2. [(ngModel)].

Handling keystrokes

Angular provides a straightforward way to handle keyboard actions: we bind to
the event on an element. In this case, on the input tag above, we’re binding to

Data Architecture with Observables - Part 2: View Components 366

keydown.enter which says if “Enter” is pressed, call the function in the expression,
which in this case is onEnter($event).

Using ngModel

As we’ve talked about before, Angular doesn’t have a general model for two-way
binding. However it can be very useful to have a two-way binding between a
component and its view. As long as the side-effects are kept local to the component,
it can be a very convenient way to keep a component property in sync with the view.

In this case, we’re establishing a two-way bind between the value of the input tag
and draftMessage.text. That is, if we type into the input tag, draftMessage.text
will automatically be set to the value of that input. Likewise, if we were to update
draftMessage.text in our code, the value in the input tag would change in the view.

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html

27 <input type="text"

28 class="chat-input"

29 placeholder="Write your message here..."

30 (keydown.enter)="onEnter($event)"

31 [(ngModel)]="draftMessage.text" />

Clicking “Send”

On our “Send” button we bind the (click) property to the onEnter function of our
component:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html

32

33 <button class="btn-chat"

34 (click)="onEnter($event)"

35 >Send</button>

36

The Entire ChatWindowComponent

We broke that up into a lot of tiny pieces. So that we can get a view of the whole
thing, here’s the code listing for the entire ChatWindowComponent:

Data Architecture with Observables - Part 2: View Components 367

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

1 import {

2 Component,

3 Inject,

4 ElementRef,

5 OnInit,

6 ChangeDetectionStrategy

7 } from '@angular/core';

8 import { Observable } from 'rxjs';

9

10 import { User } from '../user/user.model';

11 import { UsersService } from '../user/users.service';

12 import { Thread } from '../thread/thread.model';

13 import { ThreadsService } from '../thread/threads.service';

14 import { Message } from '../message/message.model';

15 import { MessagesService } from '../message/messages.service';

16

17 @Component({

18 selector: 'chat-window',

19 templateUrl: './chat-window.component.html',

20 styleUrls: ['./chat-window.component.css'],

21 changeDetection: ChangeDetectionStrategy.OnPush

22 })

23 export class ChatWindowComponent implements OnInit {

24 messages: Observable<any>;

25 currentThread: Thread;

26 draftMessage: Message;

27 currentUser: User;

28

29 constructor(public messagesService: MessagesService,

30 public threadsService: ThreadsService,

31 public UsersService: UsersService,

32 public el: ElementRef) {

33 }

34

35 ngOnInit(): void {

36 this.messages = this.threadsService.currentThreadMessages;

37

38 this.draftMessage = new Message();

39

40 this.threadsService.currentThread.subscribe(

41 (thread: Thread) => {

42 this.currentThread = thread;

43 });

Data Architecture with Observables - Part 2: View Components 368

44

45 this.UsersService.currentUser

46 .subscribe(

47 (user: User) => {

48 this.currentUser = user;

49 });

50

51 this.messages

52 .subscribe(

53 (messages: Array<Message>) => {

54 setTimeout(() => {

55 this.scrollToBottom();

56 });

57 });

58 }

59

60 onEnter(event: any): void {

61 this.sendMessage();

62 event.preventDefault();

63 }

64

65 sendMessage(): void {

66 const m: Message = this.draftMessage;

67 m.author = this.currentUser;

68 m.thread = this.currentThread;

69 m.isRead = true;

70 this.messagesService.addMessage(m);

71 this.draftMessage = new Message();

72 }

73

74 scrollToBottom(): void {

75 const scrollPane: any = this.el

76 .nativeElement.querySelector('.msg-container-base');

77 scrollPane.scrollTop = scrollPane.scrollHeight;

78 }

79 }

and template:

Data Architecture with Observables - Part 2: View Components 369

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.html

1 <div class="chat-window-container">

2 <div class="chat-window">

3 <div class="panel-container">

4 <div class="panel panel-default">

5

6 <div class="panel-heading top-bar">

7 <div class="panel-title-container">

8 <h3 class="panel-title">

9

10 Chat - {{currentThread.name}}

11 </h3>

12 </div>

13 <div class="panel-buttons-container">

14 <!-- you could put minimize or close buttons here -->

15 </div>

16 </div>

17

18 <div class="panel-body msg-container-base">

19 <chat-message

20 *ngFor="let message of messages | async"

21 [message]="message">

22 </chat-message>

23 </div>

24

25 <div class="panel-footer">

26 <div class="input-group">

27 <input type="text"

28 class="chat-input"

29 placeholder="Write your message here..."

30 (keydown.enter)="onEnter($event)"

31 [(ngModel)]="draftMessage.text" />

32

33 <button class="btn-chat"

34 (click)="onEnter($event)"

35 >Send</button>

36

37 </div>

38 </div>

39

40 </div>

41 </div>

42 </div>

Data Architecture with Observables - Part 2: View Components 370

The ChatMessageComponent

Each Message is rendered by the ChatMessageComponent.

The ChatMessageComponent

This component is relatively straightforward. The main logic here is rendering a
slightly different view depending on if the message was authored by the current user.
If the Message was not written by the current user, then we consider the message
incoming.

Remember that each ChatMessageComponent belongs to one Message. So in ngOnInit

we will subscribe to the currentUser stream and set incoming depending on if this
Message was written by the current user:

We start by defining the @Component

Data Architecture with Observables - Part 2: View Components 371

code/rxjs/rxjs-chat/src/app/chat-message/chat-message.component.ts

1 import {

2 Component,

3 OnInit,

4 Input

5 } from '@angular/core';

6 import { Observable } from 'rxjs';

7

8 import { UsersService } from './../user/users.service';

9 import { ThreadsService } from './../thread/threads.service';

10 import { MessagesService } from './../message/messages.service';

11

12 import { Message } from './../message/message.model';

13 import { Thread } from './../thread/thread.model';

14 import { User } from './../user/user.model';

15

16 @Component({

17 selector: 'chat-message',

18 templateUrl: './chat-message.component.html',

19 styleUrls: ['./chat-message.component.css']

20 })

21 export class ChatMessageComponent implements OnInit {

22 @Input() message: Message;

23 currentUser: User;

24 incoming: boolean;

25

26 constructor(public UsersService: UsersService) {

27 }

28

29 ngOnInit(): void {

30 this.UsersService.currentUser

31 .subscribe(

32 (user: User) => {

33 this.currentUser = user;

34 if (this.message.author && user) {

35 this.incoming = this.message.author.id !== user.id;

36 }

37 });

38 }

39 }

Data Architecture with Observables - Part 2: View Components 372

The ChatMessageComponent template

In our template we have two interesting ideas:

1. the FromNowPipe
2. [ngClass]

First, here’s the code:

code/rxjs/rxjs-chat/src/app/chat-message/chat-message.component.html

1 <div class="msg-container"

2 [ngClass]="{'base-sent': !incoming, 'base-receive': incoming}">

3

4 <div class="avatar"

5 *ngIf="!incoming">

6

7 </div>

8

9 <div class="messages"

10 [ngClass]="{'msg-sent': !incoming, 'msg-receive': incoming}">

11 <p>{{message.text}}</p>

12 <p class="time">{{message.sender}} • {{message.sentAt | fromNow}}</p>

13 </div>

14

15 <div class="avatar"

16 *ngIf="incoming">

17

18 </div>

19 </div>

The FromNowPipe is a pipe that casts our Messages sent-at time to a human-readable “x
seconds ago” message. You can see that we use it by: {{message.sentAt | fromNow}}

FromNowPipe uses the excellent moment.js⁹⁶ library. If you’d like to learn
about creating your own custom pipes read the source of the FromNowPipe
in code/rxjs/rxjs-chat/src/app/pipes/from-now.pipe.ts

We also make extensive use of ngClass in this view. The idea is, when we say:

⁹⁶http://momentjs.com/

http://momentjs.com/
http://momentjs.com/

Data Architecture with Observables - Part 2: View Components 373

[ngClass]="{'msg-sent': !incoming, 'msg-receive': incoming}"

We’re asking Angular to apply the msg-receive class if incoming is truthy (and apply
msg-sent if incoming is falsey).

By using the incoming property, we’re able to display incoming and outgoing
messages differently.

The ChatNavBarComponent

The last component we have to talk about is the ChatNavBarComponent. In the nav-bar
we’ll show an unread messages count to the user.

The Unread Count in the ChatNavBarComponent

The best way to try out the unread messages count is to use the “Waiting
Bot”. If you haven’t already, try sending the message ‘3’ to the Waiting
Bot and then switch to another window. The Waiting Bot will then wait 3
seconds before sending you amessage and youwill see the unreadmessages
counter increment.

The ChatNavBarComponent @Component

The only thing the ChatNavBarComponent controller needs to keep track of is the
unreadMessagesCount. This is slightly more complicated than it seems on the surface.

Themost straightforwardwaywould be to simply listen to messagesService.messages
and sum the number of Messages where isRead is false. This works fine for all
messages outside of the current thread. However new messages in the current thread
aren’t guaranteed to be marked as read by the time messages emits new values.

The safest way to handle this is to combine the messages and currentThread streams
and make sure we don’t count any messages that are part of the current thread.

Data Architecture with Observables - Part 2: View Components 374

We do this using the combineLatest operator, which we’ve already used earlier in
the chapter:

code/rxjs/rxjs-chat/src/app/chat-nav-bar/chat-nav-bar.component.ts

1 import {

2 Component,

3 Inject,

4 OnInit

5 } from '@angular/core';

6 import * as _ from 'lodash';

7

8 import { ThreadsService } from './../thread/threads.service';

9 import { MessagesService } from './../message/messages.service';

10

11 import { Thread } from './../thread/thread.model';

12 import { Message } from './../message/message.model';

13

14 @Component({

15 selector: 'chat-nav-bar',

16 templateUrl: './chat-nav-bar.component.html',

17 styleUrls: ['./chat-nav-bar.component.css']

18 })

19 export class ChatNavBarComponent implements OnInit {

20 unreadMessagesCount: number;

21

22 constructor(public messagesService: MessagesService,

23 public threadsService: ThreadsService) {

24 }

25

26 ngOnInit(): void {

27 this.messagesService.messages

28 .combineLatest(

29 this.threadsService.currentThread,

30 (messages: Message[], currentThread: Thread) =>

31 [currentThread, messages])

32

33 .subscribe(([currentThread, messages]: [Thread, Message[]]) => {

34 this.unreadMessagesCount =

35 _.reduce(

36 messages,

37 (sum: number, m: Message) => {

38 const messageIsInCurrentThread: boolean = m.thread &&

39 currentThread &&

40 (currentThread.id === m.thread.id);

Data Architecture with Observables - Part 2: View Components 375

41 // note: in a "real" app you should also exclude

42 // messages that were authored by the current user b/c they've

43 // already been "read"

44 if (m && !m.isRead && !messageIsInCurrentThread) {

45 sum = sum + 1;

46 }

47 return sum;

48 },

49 0);

50 });

51 }

52 }

If you’re not an expert in TypeScript you might find the above syntax a little bit
hard to parse. In the combineLatest callback function we’re returning an array with
currentThread and messages as its two elements.

Then we subscribe to that stream and we’re destructuring those objects in the
function call. Next we reduce over the messages and count the number of messages
that are unread and not in the current thread.

The ChatNavBarComponent template

In our view, the only thing we have left to do is display our unreadMessagesCount:

code/rxjs/rxjs-chat/src/app/chat-nav-bar/chat-nav-bar.component.html

1 <nav class="navbar navbar-default">

2 <div class="container-fluid">

3 <div class="navbar-header">

4

5

6 ng-book

7

8 </div>

9 <p class="navbar-text navbar-right">

10 <button class="btn btn-primary" type="button">

11 Messages {{ unreadMessagesCount }}

12 </button>

13 </p>

14 </div>

15 </nav>

Data Architecture with Observables - Part 2: View Components 376

Summary

There we go, if we put them all together we’ve got a fully functional chat app!

Completed Chat Application

If you checkout code/rxjs/rxjs-chat/src/app/data/chat-example-data.ts you’ll
see we’ve written a handful of bots for you that you can chat with. Here’s a code
excerpt from the Reverse Bot:

let rev: User = new User("Reverse Bot", require("images/avatars/female-avatar-4.png"));

let tRev: Thread = new Thread("tRev", rev.name, rev.avatarSrc);

Data Architecture with Observables - Part 2: View Components 377

code/rxjs/rxjs-chat/src/app/data/chat-example-data.ts

91 messagesService.messagesForThreadUser(tRev, rev)

92 .forEach((message: Message): void => {

93 messagesService.addMessage(

94 new Message({

95 author: rev,

96 text: message.text.split('').reverse().join(''),

97 thread: tRev

98 })

99);

100 },

Above you can see that we’ve subscribed to the messages for the “Reverse Bot” by
using messagesForThreadUser. Try writing a few bots of your own.

Introduction to Redux with
TypeScript

In this chapter and the next we’ll be looking at a data-architecture pattern
called Redux. In this chapter we’re going to discuss the ideas behind
Redux, build our own mini version, and then hook it up to Angular. In
the next chapter we’ll use Redux to build a bigger application.

In most of our projects so far, we’ve managed state in a fairly direct way: We tend
to grab data from services and render them in components, passing values down the
component tree along the way.

Managing our apps in this way works fine for smaller apps, but as our apps
grow, having multiple components manage different parts of the state becomes
cumbersome. For instance, passing all of our values down our component tree suffers
from the following downsides:

Intermediate property passing - In order to get state to any component we have
to pass the values down through inputs. This means we have many intermediate
components passing state that it isn’t directly using or concerned about

Inflexible refactoring - Because we’re passing inputs down through the component
tree, we’re introducing a coupling between parent and child components that often
isn’t necessary. This makes it more difficult to put a child component somewhere
else in the hierarchy because we have to change all of the new parents to pass the
state

State tree and DOM tree don’t match - The “shape” of our state often doesn’t
match the “shape” of our view/component hierarchy. By passing all data through
the component tree via props we run into difficulties when we need to reference
data in a far branch of the tree

State throughout our app - If we manage state via components, it’s difficult to
get a snapshot of the total state of our app. This can make it hard to know which

Introduction to Redux with TypeScript 379

component “owns” a particular bit of data, and which components are concerned
about changes

Pulling data out of our components and into services helps a lot. At least if services
are the “owners” of our data, we have a better idea of where to put things. But this
opens a new question: what are the best practices for “service-owned” data? Are
there any patterns we can follow? In fact, there are.

In this chapter, we’re going to discuss a data-architecture pattern called Redux which
was designed to help with these issues. We’ll implement our own version of Redux
which will store all of our state in a single place. This idea of holding all of
our application’s state in one place might sound a little crazy, but the results are
surprisingly delightful.

Redux

If you haven’t heard of Redux yet you can read a bit about it on the official website⁹⁷.
Web application data architecture is evolving and the traditional ways of structuring
data aren’t quite adequate for large web apps. Redux has been extremely popular
because it’s both powerful and easy to understand.

Data architecture can be a complex topic and so Redux’s best feature is probably its
simplicity. If you strip Redux down to the essential core, Redux is fewer than 100
lines of code.

We can build rich, easy to understand, web apps by using Redux as the backbone of
our application. But first, let’s walk through how to write a minimal Redux and later
we’ll work out patterns that emerge as we work out these ideas in a larger app.

⁹⁷http://redux.js.org/

http://redux.js.org/
http://redux.js.org/

Introduction to Redux with TypeScript 380

There are several attempts to use Redux or create a Redux-inspired system
that works with Angular. Two notable examples are:

• ngrx/store⁹⁸ and
• angular2-redux⁹⁹

ngrx is a Redux-inspired architecture that is heavily observables-based.
angular2-redux uses Redux itself as a dependency, and adds some Angular
helpers (dependency-injection, observable wrappers).

Here we’re not going to use either. Instead, we’re going to use Redux
directly in order to show the concepts without introducing a new depen-
dency. That said, both of these libraries may be helpful to youwhenwriting
your apps.

Redux: Key Ideas

The key ideas of Redux are this:

• All of your application’s data is in a single data structure called the state which
is held in the store

• Your app reads the state from this store
• This store is never mutated directly
• User interaction (and other code) fires actions which describe what happened
• A new state is created by combining the old state and the action by a function
called the reducer.

⁹⁸https://github.com/ngrx/store
⁹⁹https://github.com/InfomediaLtd/angular2-redux

https://github.com/ngrx/store
https://github.com/InfomediaLtd/angular2-redux
https://github.com/ngrx/store
https://github.com/InfomediaLtd/angular2-redux

Introduction to Redux with TypeScript 381

Redux Core

If the above bullet list isn’t clear yet, don’t worry about it - putting these ideas into
practice is the goal of the rest of this chapter.

Core Redux Ideas

What’s a reducer?

Let’s talk about the reducer first. Here’s the idea of a reducer : it takes the old state
and an action and returns a new state.

A reducer must be a pure function¹⁰⁰. That is:

1. It must not mutate the current state directly
2. It must not use any data outside of its arguments

Put another way, a pure function will always return the same value, given the
same set of arguments. And a pure function won’t call any functions which have

¹⁰⁰https://en.wikipedia.org/wiki/Pure_function

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Pure_function

Introduction to Redux with TypeScript 382

an effect on the outside world, e.g. no database calls, no HTTP calls, and no mutating
outside data structures.

Reducers should always treat the current state as read-only. A reducer does not
change the state instead, it returns a new state. (Often this new state will start
with a copy of old state, but let’s not get ahead of ourselves.)

Let’s define our very first reducer. Remember, there are three things involved:

1. An Action, which defines what to do (with optional arguments)
2. The state, which stores all of the data in our application
3. The Reducer which takes the state and the Action and returns a new state.

Defining Action and Reducer Interfaces

Since we’re using TypeScript we want to make sure this whole process is typed, so
let’s set up an interface for our Action and our Reducer:

The Action Interface

Our Action interface looks like this:

code/redux/redux-chat/tutorial/01-identity-reducer.ts
1 interface Action {

2 type: string;

3 payload?: any;

4 }

Notice that our Action has two fields:

1. type and
2. payload

The type will be an identifying string that describes the action like INCREMENT or
ADD_USER. The payload can be an object of any kind. The ? on payload? means that
this field is optional.

The Reducer Interface

Our Reducer interface looks like this:

Introduction to Redux with TypeScript 383

code/redux/redux-chat/tutorial/01-identity-reducer.ts

6 interface Reducer<T> {

7 (state: T, action: Action): T;

8 }

Our Reducer is using a feature of TypeScript called generics. In this case type T is the
type of the state. Notice that we’re saying that a valid Reducer has a function which
takes a state (of type T) and an action and returns a new state (also of type T).

Creating Our First Reducer

The simplest possible reducer returns the state itself. (You might call this the identity
reducer because it applies the identity function¹⁰¹ on the state. This is the default case
for all reducers, as we will soon see).

code/redux/redux-chat/tutorial/01-identity-reducer.ts

10 let reducer: Reducer<number> = (state: number, action: Action) => {

11 return state;

12 };

Notice that this Reducer makes the generic type concrete to number by the syntax
Reducer<number>. We’ll define more sophisticated states beyond a single number
soon.

We’re not using the Action yet, but let’s try this Reducer just the same.

¹⁰¹https://en.wikipedia.org/wiki/Identity_function

https://en.wikipedia.org/wiki/Identity_function
https://en.wikipedia.org/wiki/Identity_function

Introduction to Redux with TypeScript 384

Running the examples in this section

You can find the code for this chapter in the folder code/redux. If the
example is runnable you will see the filename the code is from above each
code box.

In this first section, these examples are run outside of the browser and run
by node.js. Because we’re using TypeScript in these examples, you should
run them using the commandline tool ts-node, (instead of node directly).

You can install ts-node by running:

1 npm install -g ts-node

Or by doing an npm install in the code/redux/redux-chat directory and
then calling ./node_modules/.bin/ts-node [filename]

For instance, to run the example above you might type (not including the
$):

1 $ cd code/redux/redux-chat/tutorial

2 $ npm install

3 $./node_modules/.bin/ts-node 01-identity-reducer.ts

Use this same procedure for the rest of the code in this chapter until we
instruct you to switch to your browser.

Running Our First Reducer

Let’s put it all together and run this reducer:

Introduction to Redux with TypeScript 385

code/redux/redux-chat/tutorial/01-identity-reducer.ts

1 interface Action {

2 type: string;

3 payload?: any;

4 }

5

6 interface Reducer<T> {

7 (state: T, action: Action): T;

8 }

9

10 let reducer: Reducer<number> = (state: number, action: Action) => {

11 return state;

12 };

13

14 console.log(reducer(0, null)); // -> 0

And run it:

$ cd code/redux/redux-chat/tutorial

$./node_modules/.bin/ts-node 01-identity-reducer.ts

0

It seems almost silly to have that as a code example, but it teaches us our first principle
of reducers:

By default, reducers return the original state.

In this case, we passed a state of the number 0 and a null action. The result from this
reducer is the state 0.

But let’s do something more interesting and make our state change.

Adjusting the Counter With actions

Eventually our state is going to be much more sophisticated than a single number.
We’re going to be holding all of the data for our app in the state, so we’ll need a
better data structure for the state eventually.

That said, using a single number for the state lets us focus on other issues for now. So
let’s continue with the idea that our state is simply a single number that is storing
a counter.

Introduction to Redux with TypeScript 386

Let’s say we want to be able to change the state number. Remember that in Redux
we do not modify the state. Instead, we create actions which instruct the reducer on
how to generate a new state.

Let’s create an Action to change our counter. Remember that the only required
property is a type. We might define our first action like this:

1 let incrementAction: Action = { type: 'INCREMENT' }

We should also create a second action that instructs our reducer to make the counter
smaller with:

1 let decrementAction: Action = { type: 'DECREMENT' }

Now that we have these actions, let’s try using them in our reducer:

code/redux/redux-chat/tutorial/02-adjusting-reducer.ts

10 let reducer: Reducer<number> = (state: number, action: Action) => {

11 if (action.type === 'INCREMENT') {

12 return state + 1;

13 }

14 if (action.type === 'DECREMENT') {

15 return state - 1;

16 }

17 return state;

18 };

And now we can try out the whole reducer:

Introduction to Redux with TypeScript 387

code/redux/redux-chat/tutorial/02-adjusting-reducer.ts

20 let incrementAction: Action = { type: 'INCREMENT' };

21

22 console.log(reducer(0, incrementAction)); // -> 1

23 console.log(reducer(1, incrementAction)); // -> 2

24

25 let decrementAction: Action = { type: 'DECREMENT' };

26

27 console.log(reducer(100, decrementAction)); // -> 99

Neat! Now the new value of the state is returned according to which action we pass
into the reducer.

Reducer switch

Instead of having so many if statements, the common practice is to convert the
reducer body to a switch statement:

code/redux/redux-chat/tutorial/03-adjusting-reducer-switch.ts

10 let reducer: Reducer<number> = (state: number, action: Action) => {

11 switch (action.type) {

12 case 'INCREMENT':

13 return state + 1;

14 case 'DECREMENT':

15 return state - 1;

16 default:

17 return state; // <-- dont forget!

18 }

19 };

20

21 let incrementAction: Action = { type: 'INCREMENT' };

22 console.log(reducer(0, incrementAction)); // -> 1

23 console.log(reducer(1, incrementAction)); // -> 2

24

25 let decrementAction: Action = { type: 'DECREMENT' };

26 console.log(reducer(100, decrementAction)); // -> 99

27

28 // any other action just returns the input state

29 let unknownAction: Action = { type: 'UNKNOWN' };

30 console.log(reducer(100, unknownAction)); // -> 100

Introduction to Redux with TypeScript 388

Notice that the default case of the switch returns the original state. This ensures
that if an unknown action is passed in, there’s no error and we get the original state
unchanged.

Q:Wait, all of my application state is in one giant switch statement?

A: Yes and no.

If this is your first exposure to Redux reducers it might feel a little weird to
have all of your application state changes be the result of a giant switch.
There are two things you should know:

1. Having your state changes centralized in one place can help a ton
in maintaining your program, particularly because it’s easy to track
down where the changes are happening when they’re all together.
(Furthermore, you can easily locate what state changes as the result of
any action because you can search your code for the token specified
for that action’s type)

2. You can (and often do) break your reducers down into several sub-
reducers which eachmanage a different branch of the state tree.We’ll
talk about this later.

Action “Arguments”

In the last example our actions contained only a type which told our reducer either
to increment or decrement the state.

But often changes in our app can’t be described by a single value - instead we need
parameters to describe the change. This is why we have the payload field in our
Action.

In this counter example, say we wanted to add 9 to the counter. One way to do this
would be to send 9 INCREMENT actions, but that wouldn’t be very efficient, especially
if we wanted to add, say, 9000.

Instead, let’s add a PLUS action that will use the payload parameter to send a number
which specifies howmuch we want to add to the counter. Defining this action is easy
enough:

Introduction to Redux with TypeScript 389

1 let plusSevenAction = { type: 'PLUS', payload: 7 };

Next, to support this action, we add a new case to our reducer that will handle a
'PLUS' action:

code/redux/redux-chat/tutorial/04-plus-action.ts
10 let reducer: Reducer<number> = (state: number, action: Action) => {

11 switch (action.type) {

12 case 'INCREMENT':

13 return state + 1;

14 case 'DECREMENT':

15 return state - 1;

16 case 'PLUS':

17 return state + action.payload;

18 default:

19 return state;

20 }

21 };

PLUS will add whatever number is in the action.payload to the state. We can try it
out:

code/redux/redux-chat/tutorial/04-plus-action.ts
23 console.log(reducer(3, { type: 'PLUS', payload: 7})); // -> 10

24 console.log(reducer(3, { type: 'PLUS', payload: 9000})); // -> 9003

25 console.log(reducer(3, { type: 'PLUS', payload: -2})); // -> 1

In the first line we take the state 3 and PLUS a payload of 7, which results in 10. Neat!
However, notice that while we’re passing in a state, it doesn’t really ever change.
That is, we’re not storing the result of our reducer’s changes and reusing it for future
actions.

Storing Our State

Our reducers are pure functions, and do not change the world around them. The
problem is, in our app, things do change. Specifically, our state changes and we need
to keep the new state somewhere.

In Redux, we keep our state in the store. The store has the responsibility of running
the reducer and then keeping the new state. Let’s take a look at a minimal store:

Introduction to Redux with TypeScript 390

code/redux/redux-chat/tutorial/05-minimal-store.ts

10 class Store<T> {

11 private _state: T;

12

13 constructor(

14 private reducer: Reducer<T>,

15 initialState: T

16) {

17 this._state = initialState;

18 }

19

20 getState(): T {

21 return this._state;

22 }

23

24 dispatch(action: Action): void {

25 this._state = this.reducer(this._state, action);

26 }

27 }

Notice that our Store is generically typed - we specify the type of the state with
generic type T. We store the state in the private variable _state.

We also give our Store a Reducer, which is also typed to operate on T, the state type
this is because each store is tied to a specific reducer. We store the Reducer in the
private variable reducer.

In Redux, we generally have 1 store and 1 top-level reducer per application.

Let’s take a closer look at each method of our State:

• In our constructor we set the _state to the initial state.
• getState() simply returns the current _state
• dispatch takes an action, sends it to the reducer and then updates the value
of _state with the return value

Introduction to Redux with TypeScript 391

Notice that dispatch doesn’t return anything. It’s only updating the store’s state
(once the result returns). This is an important principle of Redux: dispatching actions
is a “fire-and-forget” maneuver. Dispatching actions is not a direct manipulation
of the state, and it doesn’t return the new state.

When we dispatch actions, we’re sending off a notification of what happened. If we
want to know what the current state of the system is, we have to check the state of
the store.

Using the Store

Let’s try using our store:

code/redux/redux-chat/tutorial/05-minimal-store.ts

43 // create a new store

44 let store = new Store<number>(reducer, 0);

45 console.log(store.getState()); // -> 0

46

47 store.dispatch({ type: 'INCREMENT' });

48 console.log(store.getState()); // -> 1

49

50 store.dispatch({ type: 'INCREMENT' });

51 console.log(store.getState()); // -> 2

52

53 store.dispatch({ type: 'DECREMENT' });

54 console.log(store.getState()); // -> 1

We start by creating a new Store and we save this in store, which we can use to get
the current state and dispatch actions.

The state is set to 0 initially, and then we INCREMENT twice and DECREMENT once and
our final state is 1.

Being Notified with subscribe

It’s great that our Store keeps track of what changed, but in the above example we
have to ask for the state changes with store.getState(). It would be nice for us
to know immediately when a new action was dispatched so that we could respond.

Introduction to Redux with TypeScript 392

To do this we can implement the Observer pattern - that is, we’ll register a callback
function that will subscribe to all changes.

Here’s how we want it to work:

1. We will register a listener function using subscribe

2. When dispatch is called, we will iterate over all listeners and call them, which
is the notification that the state has changed.

Registering Listeners

Our listener callbacks are going to be a function that takes no arguments. Let’s define
an interface that makes it easy to describe this:

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts

10 interface ListenerCallback {

11 (): void;

12 }

After we subscribe a listener, we might want to unsubscribe as well, so lets define
the interface for an unsubscribe function as well:

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts

14 interface UnsubscribeCallback {

15 (): void;

16 }

Not much going on here - it’s another function that takes no arguments and has no
return value. But by defining these types it makes our code clearer to read.

Our store is going to keep a list of ListenerCallbacks let’s add that to our Store:

Introduction to Redux with TypeScript 393

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts
18 class Store<T> {

19 private _state: T;

20 private _listeners: ListenerCallback[] = [];

Now we want to be able to add to that list of _listeners with a subscribe function:

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts
38 subscribe(listener: ListenerCallback): UnsubscribeCallback {

39 this._listeners.push(listener);

40 return () => { // returns an "unsubscribe" function

41 this._listeners = this._listeners.filter(l => l !== listener);

42 };

43 }

subscribe accepts a ListenerCallback (i.e. a function with no arguments and no
return value) and returns an UnsubscribeCallback (the same signature). Adding the
new listener is easy: we push it on to the _listeners array.

The return value is a function which will update the list of _listeners to be
the list of _listeners without the listener we just added. That is, it returns the
UnsubscribeCallback that we can use to remove this listener from the list.

Notifying Our Listeners

Whenever our state changes, we want to call these listener functions. What this
means is, whenever we dispatch a new action, whenever the state changes, we want
to call all of the listeners:

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts
33 dispatch(action: Action): void {

34 this._state = this.reducer(this._state, action);

35 this._listeners.forEach((listener: ListenerCallback) => listener());

36 }

The Complete Store

We’ll try this out below, but before we do that, here’s the complete code listing for
our new Store:

Introduction to Redux with TypeScript 394

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts

18 class Store<T> {

19 private _state: T;

20 private _listeners: ListenerCallback[] = [];

21

22 constructor(

23 private reducer: Reducer<T>,

24 initialState: T

25) {

26 this._state = initialState;

27 }

28

29 getState(): T {

30 return this._state;

31 }

32

33 dispatch(action: Action): void {

34 this._state = this.reducer(this._state, action);

35 this._listeners.forEach((listener: ListenerCallback) => listener());

36 }

37

38 subscribe(listener: ListenerCallback): UnsubscribeCallback {

39 this._listeners.push(listener);

40 return () => { // returns an "unsubscribe" function

41 this._listeners = this._listeners.filter(l => l !== listener);

42 };

43 }

44 }

Trying Out subscribe

Now that we can subscribe to changes in our store, let’s try it out:

Introduction to Redux with TypeScript 395

code/redux/redux-chat/tutorial/06-store-w-subscribe.ts

61 let store = new Store<number>(reducer, 0);

62 console.log(store.getState()); // -> 0

63

64 // subscribe

65 let unsubscribe = store.subscribe(() => {

66 console.log('subscribed: ', store.getState());

67 });

68

69 store.dispatch({ type: 'INCREMENT' }); // -> subscribed: 1

70 store.dispatch({ type: 'INCREMENT' }); // -> subscribed: 2

71

72 unsubscribe();

73 store.dispatch({ type: 'DECREMENT' }); // (nothing logged)

74

75 // decrement happened, even though we weren't listening for it

76 console.log(store.getState()); // -> 1

Above we subscribe to our store and in the callback function we’ll log subscribed:

and then the current store state.

Notice that the listener function is not given the current state as an
argument. This might seem like an odd choice, but because there are some
nuances to deal with, it’s easier to think of the notification of state changed
as separate from the current state. Without digging too much into the
weeds, you can read more about this choice here¹⁰², here¹⁰³, and here¹⁰⁴.

We store the unsubscribe callback and then notice that after we call unsubscribe()
our log message isn’t called. We can still dispatch actions, we just won’t see the
results until we ask the store for them.
¹⁰²https://github.com/reactjs/redux/issues/1707
¹⁰³https://github.com/reactjs/redux/issues/1513
¹⁰⁴https://github.com/reactjs/redux/issues/303

https://github.com/reactjs/redux/issues/1707
https://github.com/reactjs/redux/issues/1513
https://github.com/reactjs/redux/issues/303
https://github.com/reactjs/redux/issues/1707
https://github.com/reactjs/redux/issues/1513
https://github.com/reactjs/redux/issues/303

Introduction to Redux with TypeScript 396

If you’re the type of person who likes RxJS and Observables, you might
notice that implementing our own subscription listeners could also be
implemented using RxJS. You could rewrite our Store to use Observables
instead of our own subscriptions.

In fact, we’ve already done this for you and you can find the sample code
in the file code/redux/redux-chat/tutorial/06b-rx-store.ts.

Using RxJS for the Store is an interesting and powerful pattern if you’re
willing to use RxJS for the backbone of our application data.

Here we’re not going to use Observables very heavily, particularly because
we want to discuss Redux itself and how to think about data architecture
with a single state tree. Redux itself is powerful enough to use in our
applications without Observables.

Once you get the concepts of using “straight” Redux, adding in Observables
isn’t difficult (if you already understand RxJS, that is). For now, we’re
going to use “straight” Redux and we’ll give you some guidance on some
Observable-based Redux-wrappers at the end.

The Core of Redux

The above store is the essential core of Redux. Our reducer takes the current state
and action and returns a new state, which is held by the store.

There are obviously many more things that we need to add to build a large,
production web app. However, all of the new ideas that we’ll cover are patterns
that flow from building on this simple idea of an immutable, central store of state.
If you understand the ideas presented above, you would be likely to invent many of
the patterns (and libraries) you find in more advanced Redux apps.

There’s still a lot for us to cover about day-to-day use of Redux though. For instance,
we need to know:

• How to carefully handle more complex data structures in our state
• How to be notified when our state changes without having to poll the state
(with subscriptions)

• How to intercept our dispatch for debugging (a.k.a. middleware)

Introduction to Redux with TypeScript 397

• How to compute derived values (with selectors)
• How to split up large reducers into more manageable, smaller ones (and
recombine them)

• How to deal with asynchronous data

We’ll explain each of these issues and describe common patterns over the rest of this
chapter and the next.

Let’s first deal with handling more complex data structures in our state. To do that,
we’re going to need an example that’s more interesting than a counter. Let’s start
building a chat app where users can send each other messages.

A Messaging App

In our messaging app, as in all Redux apps, there are three main parts to the data
model:

1. The state
2. The actions
3. The reducer

Messaging App state

The state in our counter app was a single number. However in our messaging app,
the state is going to be an object.

This state object will have a single property, messages. messages will be an array of
strings, with each string representing an individual message in the application. For
example:

Introduction to Redux with TypeScript 398

1 // an example `state` value

2 {

3 messages: [

4 'here is message one',

5 'here is message two'

6]

7 }

We can define the type for the app’s state like this:

code/redux/redux-chat/tutorial/07-messages-reducer.ts

7 interface AppState {

8 messages: string[];

9 }

Messaging App actions

Our app will process two actions: ADD_MESSAGE and DELETE_MESSAGE.

The ADD_MESSAGE action object will always have the property message, the message
to be added to the state. The ADD_MESSAGE action object has this shape:

1 {

2 type: 'ADD_MESSAGE',

3 message: 'Whatever message we want here'

4 }

The DELETE_MESSAGE action object will delete a specified message from the state. A
challenge here is that we have to be able to specifywhich message we want to delete.

If our messages were objects, we could assign each message an id property when it
is created. However, to simplify this example, our messages are just simple strings,
so we’ll have to get a handle to the message another way. The easiest way for now
is to just use the index of the message in the array (as a proxy for the ID).

With that in mind, the DELETE_MESSAGE action object has this shape:

Introduction to Redux with TypeScript 399

1 {

2 type: 'DELETE_MESSAGE',

3 index: 2 // <- or whatever index is appropriate

4 }

We can define the types for these actions by using the interface ... extends syntax
in TypeScript:

code/redux/redux-chat/tutorial/07-messages-reducer.ts

11 interface AddMessageAction extends Action {

12 message: string;

13 }

14

15 interface DeleteMessageAction extends Action {

16 index: number;

17 }

In this way our AddMessageAction is able to specify a message and the DeleteMes-

sageAction will specify an index.

Messaging App reducer

Remember that our reducer needs to handle two actions: ADD_MESSAGE and DELETE_-

MESSAGE. Let’s talk about these individually.

Reducing ADD_MESSAGE

Introduction to Redux with TypeScript 400

code/redux/redux-chat/tutorial/07-messages-reducer.ts

19 let reducer: Reducer<AppState> =

20 (state: AppState, action: Action): AppState => {

21 switch (action.type) {

22 case 'ADD_MESSAGE':

23 return {

24 messages: state.messages.concat(

25 (<AddMessageAction>action).message

26),

27 };

We start by switching on the action.type and handling the ADD_MESSAGE case.

TypeScript objects already have a type, so why are we adding a type

field?

There are many different ways we might choose to handle this sort of
“polymorphic dispatch”. Keeping a string in a type field (where typemeans
“action-type”) is a straightforward, portable way we can use to distinguish
different types of actions and handle them in one reducer. In part, it means
that you don’t have to create a new interface for every action.

That said, it would be more satisfying to be able to use reflection to
switch on the concrete type. While this might become possible with more
advanced type guards¹⁰⁵, this isn’t currently possible in today’s TypeScript.

Broadly speaking, types are a compile-time construct and this code is
compiled down to JavaScript and we can lose some of the typing metadata.

That said, if switching on a type field bothers you and you’d like to
use language features directly, you could use the decoration reflection
metadata¹⁰⁶. For now, a simple type field will suffice.

Adding an Item Without Mutation

When we handle an ADD_MESSAGE action, we need to add the given message to the
state. As will all reducer handlers, we need to return a new state. Remember that
our reducers must be pure and not mutate the old state.
¹⁰⁵https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html
¹⁰⁶http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4

https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html
http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4
http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4
https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html
http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4

Introduction to Redux with TypeScript 401

What would be the problem with the following code?

1 case 'ADD_MESSAGE':

2 state.messages.push(action.message);

3 return { messages: messages };

4 // ...

The problem is that this codemutates the state.messages array, which changes our
old state! Instead what we want to do is create a copy of the state.messages array
and add our new message to the copy.

code/redux/redux-chat/tutorial/07-messages-reducer.ts
22 case 'ADD_MESSAGE':

23 return {

24 messages: state.messages.concat(

25 (<AddMessageAction>action).message

26),

27 };

The syntax <AddMessageAction>action will cast our action to the more
specific type. That is, notice that our reducer takes the more general type
Action, which does not have the message field. If we leave off the cast, then
the compiler will complain that Action does not have a field message.

Instead, we know that we have an ADD_MESSAGE action so we cast it to an
AddMessageAction. We use parentheses to make sure the compiler knows
that we want to cast action and not action.message.

Remember that the reducermust return a new AppState. When we return an object
from our reducer it must match the format of the AppState that was input. In this
case we only have to keep the key messages, but in more complicated states we have
more fields to worry about.

Deleting an Item Without Mutation

Remember that when we handle the DELETE_MESSAGE action we are passing the index
of the item in the array as the faux ID. (Another common way of handling the same
idea would be to pass a real item ID.) Again, because we do not want to mutate the
old messages array, we need to handle this case with care:

Introduction to Redux with TypeScript 402

code/redux/redux-chat/tutorial/07-messages-reducer.ts

28 case 'DELETE_MESSAGE':

29 let idx = (<DeleteMessageAction>action).index;

30 return {

31 messages: [

32 ...state.messages.slice(0, idx),

33 ...state.messages.slice(idx + 1, state.messages.length)

34]

Here we use the slice operator twice. First we take all of the items up until the item
we are removing. And we concatenate the items that come after.

There are four common non-mutating operations:

• Adding an item to an array
• Removing an item from an array
• Adding / changing a key in an object
• Removing a key from an object

The first two (array) operations we just covered. We’ll talk more about the
object operations further down, but for now know that a common way to
do this is to use Object.assign. As in:

1 Object.assign({}, oldObject, newObject)

2 // <-------<-------------

You can think of Object.assign as merging objects in from the right into
the object on the left. newObject is merged into oldObjectwhich is merged
into {}. This way all of the fields in oldObject will be kept, except for
where the field exists in newObject. Neither oldObject nor newObject will
be mutated.

Of course, handling all of this on your own takes great care and it is easy to
make amistake. This is one of the reasons many people use Immutable.js¹⁰⁷,
which is a set of data structures that help enforce immutability.

¹⁰⁷https://facebook.github.io/immutable-js/

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/

Introduction to Redux with TypeScript 403

Trying Out Our Actions

Now let’s try running our actions:

code/redux/redux-chat/tutorial/07-messages-reducer.ts
42 let store = new Store<AppState>(reducer, { messages: [] });

43 console.log(store.getState()); // -> { messages: [] }

44

45 store.dispatch({

46 type: 'ADD_MESSAGE',

47 message: 'Would you say the fringe was made of silk?'

48 } as AddMessageAction);

49

50 store.dispatch({

51 type: 'ADD_MESSAGE',

52 message: 'Wouldnt have no other kind but silk'

53 } as AddMessageAction);

54

55 store.dispatch({

56 type: 'ADD_MESSAGE',

57 message: 'Has it really got a team of snow white horses?'

58 } as AddMessageAction);

59

60 console.log(store.getState());

61 // ->

62 // { messages:

63 // ['Would you say the fringe was made of silk?',

64 // 'Wouldnt have no other kind but silk',

65 // 'Has it really got a team of snow white horses?'] }

Here we start with a new store and we call store.getState() and see that we have
an empty messages array.

Next we add three messages¹⁰⁸ to our store. For each message we specify the type as
ADD_MESSAGE and we cast each object to an AddMessageAction.

Finallywe log the new state andwe can see that messages contains all threemessages.

Our three dispatch statements are a bit ugly for two reasons:

1. we manually have to specify the type string each time.We could use a constant,
but it would be nice if we didn’t have to do this and

¹⁰⁸https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top

https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top
https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top

Introduction to Redux with TypeScript 404

2. we’re manually casting to an AddMessageAction

Instead of creating these objects as an object directly we should create a function
that will create these objects. This idea of writing a function to create actions is so
common in Redux that the pattern has a name: Action Creators.

Action Creators

Instead of creating the ADD_MESSAGE actions directly as objects, let’s create a function
to do this for us:

code/redux/redux-chat/tutorial/08-action-creators.ts

19 class MessageActions {

20 static addMessage(message: string): AddMessageAction {

21 return {

22 type: 'ADD_MESSAGE',

23 message: message

24 };

25 }

26 static deleteMessage(index: number): DeleteMessageAction {

27 return {

28 type: 'DELETE_MESSAGE',

29 index: index

30 };

31 }

32 }

Here we’ve created a class with two static methods addMessage and deleteMessage.
They return an AddMessageAction and a DeleteMessageAction respectively.

You definitely don’t have to use static methods for your action creators. You
could use plain functions, functions in a namespace, even instance methods
on an object, etc. The key idea is to keep them organized in a way that
makes them easy to use.

Now let’s use our new action creators:

Introduction to Redux with TypeScript 405

code/redux/redux-chat/tutorial/08-action-creators.ts

55 let store = new Store<AppState>(reducer, { messages: [] });

56 console.log(store.getState()); // -> { messages: [] }

57

58 store.dispatch(

59 MessageActions.addMessage('Would you say the fringe was made of silk?'));

60

61 store.dispatch(

62 MessageActions.addMessage('Wouldnt have no other kind but silk'));

63

64 store.dispatch(

65 MessageActions.addMessage('Has it really got a team of snow white horses?'));

66

67 console.log(store.getState());

68 // ->

69 // { messages:

70 // ['Would you say the fringe was made of silk?',

71 // 'Wouldnt have no other kind but silk',

72 // 'Has it really got a team of snow white horses?'] }

This feels much nicer!

An added benefit is that if we eventually decided to change the format of our
messages, we could do it without having to update all of our dispatch statements.
For instance, say we wanted to add the time each message was created. We could
add a created_at field to addMessage and now all AddMessageActions will be given
a created_at field:

1 class MessageActions {

2 static addMessage(message: string): AddMessageAction {

3 return {

4 type: 'ADD_MESSAGE',

5 message: message,

6 // something like this

7 created_at: new Date()

8 };

9 }

10 //

Introduction to Redux with TypeScript 406

Using Real Redux

Now that we’ve built our own mini-redux you might be asking, “What do I need to
do to use the real Redux?” Thankfully, not very much. Let’s update our code to use
the real Redux now!

If you haven’t already, you’ll want to run npm install in the
code/redux/redux-chat/tutorial directory.

The first thing we need to do is import Action, Reducer, and Store from the redux

package. We’re also going to import a helper method createStore while we’re at it:

code/redux/redux-chat/tutorial/09-real-redux.ts

1 import {

2 Action,

3 Reducer,

4 Store,

5 createStore

6 } from 'redux';

Next, instead of specifying our initial state when we create the store instead we’re
going to let the reducer create the initial state. Here we’ll do this as the default
argument to the reducer. This way if there is no state passed in (e.g. the first time it
is called at initialization) we will use the initial state:

code/redux/redux-chat/tutorial/09-real-redux.ts

35 let initialState: AppState = { messages: [] };

36

37 let reducer: Reducer<AppState> =

38 (state: AppState = initialState, action: Action) => {

What’s neat about this is that the rest of our reducer stays the same!

The last thing we need to do is create the store using the createStore helper method
from Redux:

Introduction to Redux with TypeScript 407

code/redux/redux-chat/tutorial/09-real-redux.ts

58 let store: Store<AppState> = createStore<AppState>(reducer);

After that, everything else just works!

code/redux/redux-chat/tutorial/09-real-redux.ts

58 let store: Store<AppState> = createStore<AppState>(reducer);

59 console.log(store.getState()); // -> { messages: [] }

60

61 store.dispatch(

62 MessageActions.addMessage('Would you say the fringe was made of silk?'));

63

64 store.dispatch(

65 MessageActions.addMessage('Wouldnt have no other kind but silk'));

66

67 store.dispatch(

68 MessageActions.addMessage('Has it really got a team of snow white horses?'));

69

70 console.log(store.getState());

71 // ->

72 // { messages:

73 // ['Would you say the fringe was made of silk?',

74 // 'Wouldnt have no other kind but silk',

75 // 'Has it really got a team of snow white horses?'] }

Now that we have a handle on using Redux in isolation, the next step is to hook it
up to our web app. Let’s do that now.

Using Redux in Angular

In the last section we walked through the core of Redux and showed how to create
reducers and use stores to manage our data in isolation. Now it’s time to level-up
and integrate Redux with our Angular components.

In this section we’re going to create a minimal Angular app that contains just a
counter which we can increment and decrement with a button.

Introduction to Redux with TypeScript 408

Counter App

By using such a small app we can focus on the integration points between Redux and
Angular and then we can move on to a larger app in the next section. But first, let’s
see how to build this counter app!

Here we are going to be integrating Redux directly with Angular without
any helper libraries in-between. There are several open-source libraries
with the goal of making this process easier, and you can find them in the
references section below.

That said, it can be much easier to use those libraries once you understand
what is going on underneath the hood, which is what we work through
here.

Planning Our App

If you recall, the three steps to planning our Redux apps are to:

1. Define the structure of our central app state
2. Define actions that will change that state and

Introduction to Redux with TypeScript 409

3. Define a reducer that takes the old state and an action and returns a new state.

For this app, we’re just going to increment and decrement a counter. We did this in
the last section, and so our actions, store, and reducer will all be very familiar.

The other thing we need to do when writing Angular apps is decide where we will
create components. In this app, we’ll have a top-level AppComponent which contains
the view we see in the screenshot.

At a high level we’re going to do the following:

1. Create our Store and make it accessible to our whole app via dependency
injection

2. Subscribe to changes to the Store and display them in our components
3. When something changes (a button is pressed) we will dispatch an action to the

Store.

Enough planning, let’s look at how this works in practice!

Setting Up Redux

Defining the Application State

Let’s take a look at our AppState:

code/redux/redux-chat/redux-counter/src/app/app.state.ts
9 export interface AppState {

10 counter: number;

11 };

Here we are defining our core state structure as AppState - it is an object with one
key, counter which is a number. In the next example (the chat app) we’ll talk about
how to have more sophisticated states, but for now this will be fine.

Defining the Reducers

Next lets define the reducer which will handle incrementing and decrementing the
counter in the application state:

Introduction to Redux with TypeScript 410

code/redux/redux-chat/redux-counter/src/app/counter.reducer.ts

6 import {

7 INCREMENT,

8 DECREMENT

9 } from './counter.actions';

10

11 const initialState: AppState = { counter: 0 };

12

13 // Create our reducer that will handle changes to the state

14 export const counterReducer: Reducer<AppState> =

15 (state: AppState = initialState, action: Action): AppState => {

16 switch (action.type) {

17 case INCREMENT:

18 return Object.assign({}, state, { counter: state.counter + 1 });

19 case DECREMENT:

20 return Object.assign({}, state, { counter: state.counter - 1 });

21 default:

22 return state;

23 }

24 };

We start by importing the constants INCREMENT and DECREMENT, which are exported by
our action creators. They’re just defined as the strings 'INCREMENT' and 'DECREMENT',
but it’s nice to get the extra help from the compiler in case we make a typo. We’ll
look at those action creators in a minute.

The initialState is an AppState which sets the counter to 0.

The counterReducer handles two actions: INCREMENT, which adds 1 to the current
counter and DECREMENT, which subtracts 1. Both actions use Object.assign to ensure
that we don’tmutate the old state, but instead create a new object that gets returned
as the new state.

Since we’re here, let’s look at the action creators

Defining Action Creators

Our action creators are functions which return objects that define the action to be
taken. increment and decrement below return an object that defines the appropriate
type.

Introduction to Redux with TypeScript 411

code/redux/redux-chat/redux-counter/src/app/counter.actions.ts

1 import {

2 Action,

3 ActionCreator

4 } from 'redux';

5

6 export const INCREMENT: string = 'INCREMENT';

7 export const increment: ActionCreator<Action> = () => ({

8 type: INCREMENT

9 });

10

11 export const DECREMENT: string = 'DECREMENT';

12 export const decrement: ActionCreator<Action> = () => ({

13 type: DECREMENT

14 });

Notice that our action creator functions return the type ActionCreator<Action>.
ActionCreator is a generic class defined by Redux that we use to define functions
that create actions. In this case we’re using the concrete class Action, but we could
use a more specific Action class, such as AddMessageAction that we defined in the
last section.

Creating the Store

Now that we have our reducer and state, we could create our store like so:

1 let store: Store<AppState> = createStore<AppState>(counterReducer);

However, one of the awesome things about Redux is that it has a robust set of
developer tools. Specifically, there is a Chrome extension¹⁰⁹ that will let us monitor
the state of our application and dispatch actions.

¹⁰⁹https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

Introduction to Redux with TypeScript 412

Counter App With Redux Devtools

What’s really neat about the Redux Devtools is that it gives us clear insight to every
action that flows through the system and it’s affect on the state.

Go ahead and install the Redux Devtools Chrome extension¹¹⁰ now!

In order to use the Devtools we have to do one thing: add it to our store.

code/redux/redux-chat/redux-counter/src/app/app.store.ts
16 const devtools: StoreEnhancer<AppState> =

17 window['devToolsExtension'] ?

18 window['devToolsExtension']() : f => f;

Not everyone who uses our app will necessarily have the Redux Devtools installed.
The code above will check for window.devToolsExtension, which is defined by
Redux Devtools, and if it exists, we will use it. If it doesn’t exist, we’re just returning
an identity function (f => f) that will return whatever is passed to it.

Middleware is a term for a function that enhances the functionality of
another library. The Redux Devtools is one of many possible middleware
libraries for Redux. Redux supports lots of interesting middleware and it’s
easy to write our own.

You can read more about Redux middleware here¹¹¹
¹¹⁰https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
¹¹¹http://redux.js.org/docs/advanced/Middleware.html

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
http://redux.js.org/docs/advanced/Middleware.html
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
http://redux.js.org/docs/advanced/Middleware.html

Introduction to Redux with TypeScript 413

In order to use this devtools we pass it as middleware to our Redux store:

code/redux/redux-chat/redux-counter/src/app/app.store.ts

20 export function createAppStore(): Store<AppState> {

21 return createStore<AppState>(

22 reducer,

23 compose(devtools)

24);

25 }

Now whenever we dispatch an action and change our state, we can inspect it in our
browser!

Providing the Store

Now that we have the Redux core setup, let’s turn our attention to our Angular
components. Let’s create our top-level app component, AppComponent. This will be
the component we use to bootstrap Angular:

We’re going to use the AppComponent as the root component. Remember that since
this is a Redux app, we need to make our store instance accessible everywhere in our
app. How should we do this? We’ll use dependency injection (DI).

If you recall from the dependency injection chapter, when we want to make
something available via DI, then we use the providers configuration to add it to
the list of providers in our NgModule.

When we provide something to the DI system, we specify two things:

1. the token to use to refer this injectable dependency
2. the way to inject the dependency

Oftentimes if we want to provide a singleton service we might use the useClass

option as in:

Introduction to Redux with TypeScript 414

1 { provide: SpotifyService, useClass: SpotifyService }

In the case above, we’re using the class SpotifyService as the token in the DI system.
The useClass option tells Angular to create an instance of SpotifyService and reuse
that instance whenever the SpotifyService injection is requested (e.g. maintain a
Singleton).

One problem with us using this method is that we don’t want Angular to create our
store - we did it ourselves above with createStore. We just want to use the store

we’ve already created.

To do this we’ll use the useValue option of provide. We’ve done this before with
configurable values like API_URL:

1 { provide: API_URL, useValue: 'http://localhost/api' }

The one thing we have left to figure out is what token we want to use to inject. Our
store is of type Store<AppState>:

code/redux/redux-chat/redux-counter/src/app/app.store.ts
20 export function createAppStore(): Store<AppState> {

21 return createStore<AppState>(

22 reducer,

23 compose(devtools)

24);

25 }

26

27 export const appStoreProviders = [

28 { provide: AppStore, useFactory: createAppStore }

29];

Store is an interface, not a class and, unfortunately, we can’t use interfaces as a
dependency injection key.

If you’re interested inwhywe can’t use an interface as a DI key, it’s because
TypeScript interfaces are removed after compilation and not available at
runtime.

If you’d like to read more, see here¹¹², here¹¹³, and here¹¹⁴.

¹¹²http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
¹¹³https://github.com/angular/angular/issues/135
¹¹⁴http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
https://github.com/angular/angular/issues/135
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2
http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
https://github.com/angular/angular/issues/135
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

Introduction to Redux with TypeScript 415

This means we need to create our own token that we’ll use for injecting the store.
Thankfully, Angular makes this easy to do. Let’s create this token in it’s own file so
that way we can import it from anywhere in our application;

code/redux/redux-chat/redux-counter/src/app/app.store.ts

14 export const AppStore = new InjectionToken('App.store');

Here we have created a const AppStore which uses the InjectionToken class from
Angular. InjectionToken is a better choice than injecting a string directly because it
helps us avoid collisions.

Now we can use this token AppStore with provide. Let’s do that now.

Bootstrapping the App

Back in app.module.ts, let’s create the NgModule we’ll use to bootstrap our app:

code/redux/redux-chat/redux-counter/src/app/app.module.ts

1 import { BrowserModule } from '@angular/platform-browser';

2 import { NgModule } from '@angular/core';

3 import { FormsModule } from '@angular/forms';

4 import { HttpClientModule } from "@angular/common/http";

5

6 import { appStoreProviders } from './app.store';

7

8 import { AppComponent } from './app.component';

9

10 @NgModule({

11 declarations: [

12 AppComponent

13],

14 imports: [

15 BrowserModule,

16 FormsModule,

17 HttpClientModule

18],

19 providers: [appStoreProviders],

20 bootstrap: [AppComponent]

21 })

22 export class AppModule { }

Introduction to Redux with TypeScript 416

Now we are able to get a reference to our Redux store anywhere in our app by
injecting AppStore. The place we need it most now is our AppComponent.

Notice that we exported the function appStoreProviders from
app.store.ts and then used that function in providers. Why not
use the { provide: ..., useFactory: ... } syntax directly? The answer
is related to AOT - if we want to ahead-of-time compile a provider that
uses a function, we must first export is as a function from another module.

The AppComponent

With our setup out of the way, we can start creating our component that actually
displays the counter to the user and provides buttons for the user to change the state.

imports

Let’s start by looking at the imports:

code/redux/redux-chat/redux-counter/src/app/app.component.ts

1 import { Component, Inject } from '@angular/core';

2 import { Store } from 'redux';

3 import { AppStore } from './app.store';

4 import { AppState } from './app.state';

5 import * as CounterActions from './counter.actions';

We import Store from Redux as well as our injector token AppStore, which will get
us a reference to the singleton instance of our store. We also import the AppState

type, which helps us know the structure of the central state.

Lastly, we import our action creators with * as CounterActions. This syntax will
let us call CounterActions.increment() to create an INCREMENT action.

Introduction to Redux with TypeScript 417

The template

Let’s look at the template of our AppComponent.

In this chapter we are adding some style using the CSS framework
Bootstrap¹¹⁵

Counter App Template

code/redux/redux-chat/redux-counter/src/app/app.component.html

1 <div class="row">

2 <div class="col-sm-6 col-md-4">

3 <div class="thumbnail">

4 <div class="caption">

5 <h3>Counter</h3>

6 <p>Custom Store</p>

7

8 <p>

9 The counter value is:

10 {{ counter }}

11 </p>

¹¹⁵http://getbootstrap.com

http://getbootstrap.com/
http://getbootstrap.com/

Introduction to Redux with TypeScript 418

12

13 <p>

14 <button (click)="increment()"

15 class="btn btn-primary">

16 Increment

17 </button>

18 <button (click)="decrement()"

19 class="btn btn-default">

20 Decrement

21 </button>

22 </p>

23 </div>

24 </div>

25 </div>

26 </div>

The three things to note here are that we’re:

1. displaying the value of the counter in {{ counter }}

2. calling the increment() function in a button and
3. calling the decrement() function in a button.

The constructor

Remember that this component depends on the Store, so we need to inject it in the
constructor. This is how we use our custom AppStore token to inject a dependency:

code/redux/redux-chat/redux-counter/src/app/app.component.ts

1 import { Component, Inject } from '@angular/core';

2 import { Store } from 'redux';

3 import { AppStore } from './app.store';

4 import { AppState } from './app.state';

5 import * as CounterActions from './counter.actions';

6

7 @Component({

8 selector: 'app-root',

9 templateUrl: './app.component.html',

10 styleUrls: ['./app.component.css']

11 })

12 export class AppComponent {

Introduction to Redux with TypeScript 419

13 counter: number;

14

15 constructor(@Inject(AppStore) private store: Store<AppState>) {

16 store.subscribe(() => this.readState());

17 this.readState();

18 }

19

20 readState() {

21 const state: AppState = this.store.getState() as AppState;

22 this.counter = state.counter;

23 }

24

25 increment() {

26 this.store.dispatch(CounterActions.increment());

27 }

28

29 decrement() {

30 this.store.dispatch(CounterActions.decrement());

31 }

32 }

We use the @Inject decorator to inject AppStore - notice that we define the type of
the variable store to Store<AppState>. Having a different injection token than the
type of the dependency injected is a little different than when we use the class as the
injection token (and Angular infers what to inject).

We set the store to an instance variable (with private store). Now that we
have the store we can listen for changes. Here we call store.subscribe and call
this.readState(), which we define below.

The store will call subscribe only when a new action is dispatched, so in this case
we need to make sure we manually call readState at least once to ensure that our
component gets the initial data.

The method readState reads from our store and updates this.counter to the current
value. Because this.counter is a property on this class and bound in the view,
Angular will detect when it changes and re-render this component.

We define two helper methods: increment and decrement, each of which dispatch
their respective actions to the store.

Introduction to Redux with TypeScript 420

Putting It All Together

Try it out!

cd code/redux/redux-chat/redux-counter

npm install

npm start

open http://localhost:4200

Working Counter App

Congratulations! You’ve created your first Angular and Redux app!

What’s Next

Now that we’ve built a basic app using Redux and Angular, we should try building
a more complicated app. When we build bigger apps we encounter new challenges

Introduction to Redux with TypeScript 421

like:

• How do we combine reducers?
• How do we extract data from different branches of the state?
• How should we organize our Redux code?

In the next chapter, we’ll build a chat app which will tackle all of these questions!

References

If you want to learn more about Redux, here are some good resources:

• Official Redux Website¹¹⁶
• This Video Tutorial by Redux’s Creator¹¹⁷
• Real World Redux¹¹⁸ (presentation slides)
• The power of higher-order reducers¹¹⁹

To learn more about Redux and Angular checkout:

• angular2-redux¹²⁰
• ng2-redux¹²¹
• ngrx/store¹²²

Onward!
¹¹⁶http://redux.js.org/
¹¹⁷https://egghead.io/courses/getting-started-with-redux
¹¹⁸https://speakerdeck.com/chrisui/real-world-redux
¹¹⁹http://slides.com/omnidan/hor
¹²⁰https://github.com/InfomediaLtd/angular2-redux
¹²¹https://github.com/angular-redux/ng2-redux
¹²²https://github.com/ngrx/store

http://redux.js.org/
https://egghead.io/courses/getting-started-with-redux
https://speakerdeck.com/chrisui/real-world-redux
http://slides.com/omnidan/hor
https://github.com/InfomediaLtd/angular2-redux
https://github.com/angular-redux/ng2-redux
https://github.com/ngrx/store
http://redux.js.org/
https://egghead.io/courses/getting-started-with-redux
https://speakerdeck.com/chrisui/real-world-redux
http://slides.com/omnidan/hor
https://github.com/InfomediaLtd/angular2-redux
https://github.com/angular-redux/ng2-redux
https://github.com/ngrx/store

Intermediate Redux in Angular
In the last chapter we learned about Redux, the popular and elegant data architecture.
In that chapter, we built an extremely basic app that tied our Angular components
and the Redux store together.

In this chapter we’re going to take on those ideas and build on them to create a more
sophisticated chat app.

Here’s a screenshot of the app we’re going to build:

Completed Chat Application

Intermediate Redux in Angular 423

Context For This Chapter

Earlier in this book we built a chat app using RxJS. We’re going to be building that
same app again only this time with Redux. The point is for you to be able to compare
and contrast how the same app works with different data architecture strategies.

You are not required to have read the RxJS chapter in order to work through this one.
This chapter stands on its own with regard to the RxJS chapters. If you have read that
chapter, you’ll be able to skim through some of the sections here where the code is
largely the same (for instance, the data models themselves don’t change much).

We do expect that you’ve read through the previous Redux chapter or at least have
some familiarity with Redux.

Chat App Overview

In this application we’ve provided a few bots you can chat with. Open up the code
and try it out:

cd code/redux/redux-chat

npm install

npm start

Now open your browser to http://localhost:4200.

Notice a few things about this application:

• You can click on the threads to chat with another person
• The bots will send you messages back, depending on their personality
• The unread message count in the top corner stays in sync with the number of
unread messages

Let’s look at an overview of how this app is constructed. We have

• 3 top-level Angular Components
• 3 models
• and 2 reducers, with their respective action creators

Let’s look at them one at a time.

Intermediate Redux in Angular 424

Components

The page is broken down into three top-level components:

Redux Chat Top-Level Components

• ChatNavBarComponent - contains the unread messages count
• ChatThreadsComponent - shows a clickable list of threads, along with the most
recent message and the conversation avatar

• ChatWindowComponent - shows the messages in the current thread with an input
box to send new messages

Models

This application also has three models:

Intermediate Redux in Angular 425

Redux Chat Models

• User - stores information about a chat participant
• Message - stores an individual message
• Thread - stores a collection of Messages as well as some data about the
conversation

Reducers

In this app, we have two reducers:

• UsersReducer - handles information about the current user
• ThreadsReducer - handles threads and their messages

Summary

At a high level our data architecture looks like this:

• All information about the users and threads (which hold messages) are con-
tained in our central store

• Components subscribe to changes in that store and display the appropriate data
(unread count, list of threads, the messages themselves

• When the user sends a message, our components dispatch an action to the store

In the rest of this chapter, we’re going to go in-depth on howwe implement this using
Angular and Redux. We’ll start by implementing our models, then look at how we
create our app state and reducers, and then finally we’ll implement the Components.

Intermediate Redux in Angular 426

Implementing the Models

Let’s start with the easy stuff and take a look at the models.

We’re going to be specifying each of our model definitions as interfaces. This isn’t
a requirement and you’re free to use more elaborate objects if you wish. That said,
objects with methods that mutate their internal state can break the functional model
that we’re striving for.

That is, all mutations to our app state should only be made by the reducers - the
objects in the state should be immutable themselves.

So by defining an interface for our models,

1. we’re able to ensure that the objects we’re workingwith conform to an expected
format at compile time and

2. we don’t run the risk of someone accidentally adding a method to the model
object that would work in an unexpected way.

User

Our User interface has an id, name, and avatarSrc.

code/redux/redux-chat/src/app/user/user.model.ts

1 /**

2 * A User represents an agent that sends messages

3 */

4 export interface User {

5 id: string;

6 name: string;

7 avatarSrc: string;

8 isClient?: boolean;

9 }

We also have a boolean isClient (the question mark indicates that this field is
optional). We will set this value to true for the User that represents the client, the
person using the app.

Intermediate Redux in Angular 427

Thread

Similarly, Thread is also a TypeScript interface:

code/redux/redux-chat/src/app/thread/thread.model.ts

1 import { Message } from '../message/message.model';

2

3 /**

4 * Thread represents a group of Users exchanging Messages

5 */

6 export interface Thread {

7 id: string;

8 name: string;

9 avatarSrc: string;

10 messages: Message[];

11 }

We store the id of the Thread, the name, and the current avatarSrc. We also expect
an array of Messages in the messages field.

Message

Message is our third and final model interface:

code/redux/redux-chat/src/app/message/message.model.ts

1 import { User } from '../user/user.model';

2 import { Thread } from '../thread/thread.model';

3

4 /**

5 * Message represents one message being sent in a Thread

6 */

7 export interface Message {

8 id?: string;

9 sentAt?: Date;

10 isRead?: boolean;

11 thread?: Thread;

12 author: User;

13 text: string;

14 }

Intermediate Redux in Angular 428

Each message has:

• id - the id of the message
• sentAt - when the message was sent
• isRead - a boolean indicating that the message was read
• author - the User who wrote this message
• text - the text of the message
• thread - a reference to the containing Thread

App State

Now that we have our models, let’s talk about the shape of our central state. In the
previous chapter, our central state was a single object with the key counter which
had the value of a number. This app, however, is more complicated.

Here’s the first part of our app state:

code/redux/redux-chat/src/app/app.reducer.ts

18 export interface AppState {

19 users: UsersState;

20 threads: ThreadsState;

21 }

Our AppState is also an interface and it has two top level keys: users and threads

- these are defined by two more interfaces UsersState and ThreadsState, which are
defined in their respective reducers.

A Word on Code Layout

This is a common pattern we use in Redux apps: the top level state has a top-
level key for each reducer. In our app we’re going to keep this top-level reducer
in app.reducer.ts.

Each reducer will have it’s own file. In that file we’ll store:

• The interface that describes that branch of the state tree

Intermediate Redux in Angular 429

• The value of the initial state, for that branch of the state tree
• The reducer itself
• Any selectors that query that branch of the state tree - we haven’t talked about
selectors yet, but we will soon.

The reason we keep all of these different things together is because they all deal with
the structure of this branch of the state tree. By putting these things in the same file
it’s very easy to refactor everything at the same time.

You’re free to have multiple layers of nesting, if you so desire. It’s a nice way to break
up large modules in your app.

The Root Reducer

Since we’re talking about how to split up reducers, let’s look at our root reducer now:

code/redux/redux-chat/src/app/app.reducer.ts

18 export interface AppState {

19 users: UsersState;

20 threads: ThreadsState;

21 }

22

23 const rootReducer: Reducer<AppState> = combineReducers<AppState>({

24 users: UsersReducer,

25 threads: ThreadsReducer

26 });

27

28 export default rootReducer;

Notice the symmetry here - our UsersReducerwill operate on the users key, which is
of type UsersState and our ThreadsReducer will operate on the threads key, which
is of type ThreadsState.

This is made possible by the combineReducers function which takes a map of keys
and reducers and returns a new reducer that operates appropriately on those keys.

Of course we haven’t finished looking at the structure of our AppState yet, so let’s
do that now.

Intermediate Redux in Angular 430

The UsersState

Our UsersState holds a reference to the currentUser.

code/redux/redux-chat/src/app/user/users.reducer.ts

18 export interface UsersState {

19 currentUser: User;

20 };

21

22 const initialState: UsersState = {

23 currentUser: null

24 };

You could imagine that this branch of the state tree could hold information about
all of the users, when they were last seen, their idle time, etc. But for now this will
suffice.

We’ll use initialState in our reducer when we define it below, but for now we’re
just going to set the current user to null.

The ThreadsState

Let’s look at the ThreadsState:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

25 export interface ThreadsEntities {

26 [id: string]: Thread;

27 }

28

29 export interface ThreadsState {

30 ids: string[];

31 entities: ThreadsEntities;

32 currentThreadId?: string;

33 };

34

35 const initialState: ThreadsState = {

36 ids: [],

37 currentThreadId: null,

38 entities: {}

39 };

Intermediate Redux in Angular 431

We start by defining an interface called ThreadsEntities which is a map of thread
ids to Threads. The idea is that we’ll be able to look up any thread by id in this map.

In the ThreadsState we’re also storing an array of the ids. This will store the list of
possible ids that we might find in entities.

This strategy is used by the commonly-used library normalizr¹²³. The idea
is that when we standardize how we store entities in our Redux state,
we’re able to build helper libraries and it’s clearer to work with. Instead
of wondering what the format is for each tree of the state, when we use
normalizr a lot of the choices have been made for us and we’re able to
work more quickly.

I’ve opted not to teach normalizr in this chapter because we’re learning so
many other things. That said, I would be very likely to use normalizr in
my production applications.

That said, normalizr is totally optional - nothing major changes in our app
by not using it.

If you’d like to learn how to use normalizr, checkout the official docs¹²⁴,
this blog post¹²⁵, and the thread referenced by Redux creator Dan Abramov
here¹²⁶

We store the currently viewed thread in currentThreadId - the idea here is that we
want to know which thread the user is currently looking at.

We set our initialState to “empty” values.

Visualizing Our AppState

Redux Devtools provides us with a “Chart” view that lets us inspect the state of our
app. Here’s what mine looks like after being booted with all of the demo data:

¹²³https://github.com/paularmstrong/normalizr
¹²⁴https://github.com/paularmstrong/normalizr
¹²⁵https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.l8ur7ipu6
¹²⁶https://twitter.com/dan_abramov/status/663032263702106112

https://github.com/paularmstrong/normalizr
https://github.com/paularmstrong/normalizr
https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.l8ur7ipu6
https://twitter.com/dan_abramov/status/663032263702106112
https://twitter.com/dan_abramov/status/663032263702106112
https://github.com/paularmstrong/normalizr
https://github.com/paularmstrong/normalizr
https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.l8ur7ipu6
https://twitter.com/dan_abramov/status/663032263702106112

Intermediate Redux in Angular 432

Redux Chat State Chart

What’s neat is that we can hover over an individual node and see the attributes of
that piece of data:

Intermediate Redux in Angular 433

Inspecting the current thread

Building the Reducers (and Action Creators)

Now that we have our central state, we can start changing it using our reducers!

Since reducers handle actions, we need to know the format of our actions in our
reducer. So let’s build our action creators at the same time we build our reducers

Set Current User Action Creators

The UsersState stores the current user. This means we need an action to set the
current user. We’re going to keep our actions in the actions folder and name the

Intermediate Redux in Angular 434

actions to match their corresponding reducer, in this case UserActions.

code/redux/redux-chat/src/app/user/user.actions.ts

20 export const SET_CURRENT_USER = '[User] Set Current';

21 export interface SetCurrentUserAction extends Action {

22 user: User;

23 }

24 export const setCurrentUser: ActionCreator<SetCurrentUserAction> =

25 (user) => ({

26 type: SET_CURRENT_USER,

27 user: user

28 });

Here we define the const SET_CURRENT_USER, which we’ll use to switch on in our
reducer.

We also define a new subinterface SetCurrentUserAction which extends Action to
add a user property. We’ll use the user property to indicate which user we want to
make the current user.

The function setCurrentUser is our proper action creator function. It takes user as
an argument, and returns a SetCurrentUserActionwhich we can give to our reducer.

UsersReducer - Set Current User

Now we turn our attention to our UsersReducer:

code/redux/redux-chat/src/app/user/users.reducer.ts

26 export const UsersReducer =

27 function(state: UsersState = initialState, action: Action): UsersState {

28 switch (action.type) {

29 case UserActions.SET_CURRENT_USER:

30 const user: User = (<UserActions.SetCurrentUserAction>action).user;

31 return {

32 currentUser: user

33 };

34 default:

35 return state;

36 }

37 };

Intermediate Redux in Angular 435

Our UsersReducer takes a UsersState as the first argument. Notice that this isn’t the
AppState! Our “child reducer” only works with it’s branch of the state tree.

Our UsersReducer, like all reducers, returns a new state, in this case it is of type
UsersState.

Next we switch on the action.type and we handle the UserActions.SET_CURRENT_-
USER.

In order to set the current user, we need to get the user from the incoming action.
To do this, we first cast the action to UserActions.SetCurrentUserAction and then
we read the .user field.

It might seem a little weird that we originally created a
SetCurrentUserAction but then now we switch on a type string
instead of using the type directly.

Indeed, we are fighting TypeScript a little here. We lose interface metadata
when the TypeScript is compiled to JavaScript. We could instead try some
sort of reflection (through decorator metadata, or looking at a constructor
etc.).

While down-casting our SetCurrentUserAction to an Action on dispatch

and then re-casting is a bit ugly, it’s a straightforward and portable way to
handle this “polymorphic dispatch” for this app.

We need to return a new UsersState. Since UsersState only has one key, we return
an object with the currentUser set to the incoming action’s user.

Thread and Messages Overview

The core of our application is messages in threads. There are three actions we need
to support:

1. Adding a new thread to the state
2. Adding messages to a thread
3. Selecting a thread

Let’s start by creating a new thread

Intermediate Redux in Angular 436

Adding a New Thread Action Creators

Here’s the action creator for adding a new Thread to our state:

code/redux/redux-chat/src/app/thread/thread.actions.ts

22 export const ADD_THREAD = '[Thread] Add';

23 export interface AddThreadAction extends Action {

24 thread: Thread;

25 }

26 export const addThread: ActionCreator<AddThreadAction> =

27 (thread) => ({

28 type: ADD_THREAD,

29 thread: thread

30 });

Notice that this is structurally very similar to our previous action creator. We define
a const ADD_THREAD that we can switch on, a custom Action, and an action creator
addThread which generates the Action.

Notice that we don’t initialize the Thread itself here - the Thread is accepted as an
argument.

Adding a New Thread Reducer

Now let’s start our ThreadsReducer by handling ADD_THREAD:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

45 export const ThreadsReducer =

46 function(state: ThreadsState = initialState, action: Action): ThreadsState {

47 switch (action.type) {

48

49 // Adds a new Thread to the list of entities

50 case ThreadActions.ADD_THREAD: {

51 const thread = (<ThreadActions.AddThreadAction>action).thread;

52

53 if (state.ids.includes(thread.id)) {

54 return state;

55 }

56

57 return {

Intermediate Redux in Angular 437

58 ids: [...state.ids, thread.id],

59 currentThreadId: state.currentThreadId,

60 entities: Object.assign({}, state.entities, {

61 [thread.id]: thread

62 })

63 };

64 }

65

66 // Adds a new Message to a particular Thread

Our ThreadsReducer handles the ThreadsState. When we handle the ADD_THREAD

action, we cast the action object back into a ThreadActions.AddThreadAction and
then pull the Thread out.

Next we check to see if this new thread.id already appears in the list of state.ids.
If it does, then we don’t make any changes, but instead return the current state.

However if this thread is new, then we need to add it to our current state.

Remember when we create a new ThreadsState we need to take care to not mutate
our old state. This looks more complicated than any state we’ve done so far, but it’s
not very different in principle.

We start by adding our thread.id to the ids array. Here we’re using the ES6 spread
operator (...) to indicate that we want to put all of the existing state.ids into this
new array and then append thread.id to the end.

currentThreadId does not change when we add a new thread, so we return the old
state.currentThreadId for this field.

For entities, remember that it is an object where the key is the string id of each
thread and the value is the thread itself. We’re using Object.assign here to create a
new object that merges the old state.entities with our newly added thread into a
new object.

Intermediate Redux in Angular 438

You might be kind of tired of meticulously copying these objects when we
need to make changes. That’s a common response! In fact, it’s easy to make
mutations here by accident.

This is why Immutable.js¹²⁷ was written. Immutable.js is often used with
Redux for this purpose. When we use Immutable, these careful updates are
handled for us.

I’d encourage you to take a look at Immutable.js and see if it is a good fit
for your reducers.

Now we can add new threads to our central state!

Adding New Messages Action Creators

Now that we have threads we can start adding messages to them.

Let’s define a new action for adding messages:

code/redux/redux-chat/src/app/thread/thread.actions.ts

32 export const ADD_MESSAGE = '[Thread] Add Message';

33 export interface AddMessageAction extends Action {

34 thread: Thread;

35 message: Message;

36 }

The AddMessageAction adds a Message to a Thread.

Here’s the action creator for adding a message:

¹²⁷https://facebook.github.io/immutable-js/

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/

Intermediate Redux in Angular 439

code/redux/redux-chat/src/app/thread/thread.actions.ts

37 export const addMessage: ActionCreator<AddMessageAction> =

38 (thread: Thread, messageArgs: Message): AddMessageAction => {

39 const defaults = {

40 id: uuid(),

41 sentAt: new Date(),

42 isRead: false,

43 thread: thread

44 };

45 const message: Message = Object.assign({}, defaults, messageArgs);

46

47 return {

48 type: ADD_MESSAGE,

49 thread: thread,

50 message: message

51 };

52 };

The addMessage action creator accepts a thread and an object we use for crafting
the message. Notice here that we keep a list of defaults. The idea here is that we
want to encapsulate creating an id, setting the timestamp, and setting the isRead

status. Someone who wants to send a message shouldn’t have to worry about how
the UUIDs are formed, for instance.

That said, maybe the client using this library crafted the message beforehand and if
they send a message with an existing id, we want to keep it. To enable this default
behavior we merge the messageArgs into the defaults and copy those values to a
new object.

Lastly we return the ADD_MESSAGE action with the thread and new message.

Adding A New Message Reducer

Now we will add our ADD_MESSAGE handler to our ThreadsReducer. When a new
message is added, we need to take the thread and add the message to it.

There is one tricky thing we need to handle that may not be obvious at this point: if
the thread is the “current thread” we need to mark this message as read.

Intermediate Redux in Angular 440

The user will always have one thread that is the “current thread” that they’re looking
at. We’re going to say that if a new message is added to the current thread, then it’s
automatically marked as read.

code/redux/redux-chat/src/app/thread/threads.reducer.ts

67 case ThreadActions.ADD_MESSAGE: {

68 const thread = (<ThreadActions.AddMessageAction>action).thread;

69 const message = (<ThreadActions.AddMessageAction>action).message;

70

71 // special case: if the message being added is in the current thread, then

72 // mark it as read

73 const isRead = message.thread.id === state.currentThreadId ?

74 true : message.isRead;

75 const newMessage = Object.assign({}, message, { isRead: isRead });

76

77 // grab the old thread from entities

78 const oldThread = state.entities[thread.id];

79

80 // create a new thread which has our newMessage

81 const newThread = Object.assign({}, oldThread, {

82 messages: [...oldThread.messages, newMessage]

83 });

84

85 return {

86 ids: state.ids, // unchanged

87 currentThreadId: state.currentThreadId, // unchanged

88 entities: Object.assign({}, state.entities, {

89 [thread.id]: newThread

90 })

91 };

92 }

93

94 // Select a particular thread in the UI

The code is a bit long because we’re being careful not to mutate the original thread,
but it is not much different than what we’ve done so far in principle.

We start by extracting the thread and message.

Next we mark the message as read, if its part of the “current thread” (we’ll look at
how to set the current thread next).

Intermediate Redux in Angular 441

Then we grab the oldThread and create a newThread which has the newMessage

appended on to the old messages.

Finally we return the new ThreadsState. The current list of thread ids and the
currentThreadId are unchanged by adding a message, so we pass the old values
here. The only thing we change is that we update entities with our newThread.

Now let’s implement the last part of our data backbone: selecting a thread.

Selecting A Thread Action Creators

Our user can have multiple chat sessions in progress at the same time. However, we
only have one chat window (where the user can read and send messages). When the
user clicks on a thread, we want to show that thread’s messages in the chat window.

Selecting A Thread

We need to keep track of which thread is the currently selected thread. To do that,
we’ll use the currentThreadId property in the ThreadsState.

Let’s create the actions for this:

Intermediate Redux in Angular 442

code/redux/redux-chat/src/app/thread/thread.actions.ts

54 export const SELECT_THREAD = '[Thread] Select';

55 export interface SelectThreadAction extends Action {

56 thread: Thread;

57 }

58 export const selectThread: ActionCreator<SelectThreadAction> =

59 (thread) => ({

60 type: SELECT_THREAD,

61 thread: thread

62 });

There’s nothing conceptually new in this action: we’ve got a new type of SELECT_-
THREAD and we pass the Thread that we’re selecting as an argument.

Selecting A Thread Reducer

To select a thread we need to do two things:

1. set currentThreadId to the selected thread’s id
2. mark all messages in that thread as read

Here’s the code for that reducer:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

95 case ThreadActions.SELECT_THREAD: {

96 const thread = (<ThreadActions.SelectThreadAction>action).thread;

97 const oldThread = state.entities[thread.id];

98

99 // mark the messages as read

100 const newMessages = oldThread.messages.map(

101 (message) => Object.assign({}, message, { isRead: true }));

102

103 // give them to this new thread

104 const newThread = Object.assign({}, oldThread, {

105 messages: newMessages

106 });

107

108 return {

109 ids: state.ids,

Intermediate Redux in Angular 443

110 currentThreadId: thread.id,

111 entities: Object.assign({}, state.entities, {

112 [thread.id]: newThread

113 })

114 };

115 }

116

117 default:

118 return state;

119 }

120 };

We start by getting the thread-to-select and then using that thread.id to get the
current Thread that exists in state to get the values.

This maneuver is a bit defensive. Why not just use the thread that is passed
in? That might be the right design decision for some apps. In this case we
protect against some externalmutation of thread by reading the last known
values of that thread in state.entities.

Next we create a copy of all of the old messages and set them as isRead: true. Then
we assign those new read messages to newThread.

Finally we return our new ThreadsState.

Reducers Summary

We did it! Above is everything we need for the backbone of our data architecture.

To recap, we have a UsersReducer which maintains the current user. We have a
ThreadsReducer which manages:

• The list of threads
• The messages in those threads
• The currently selected thread

We can derive everything else that we need (e.g. the unread count) from these pieces
of data.

Now we need to hook them up to our components!

Intermediate Redux in Angular 444

Building the Angular Chat App

As we mentioned earlier in the chapter, the page is broken down into three top-level
components:

Redux Chat Top-Level Components

• ChatNavBarComponent - contains the unread messages count
• ChatThreadsComponent - shows a clickable list of threads, along with the most
recent message and the conversation avatar

• ChatWindowComponent - shows the messages in the current thread with an input
box to send new messages

We’re going to bootstrap our app much like we did in the last chapter. We’re going
to initialize our Redux store at the top of the app and provide it via Angular’s

Intermediate Redux in Angular 445

dependency injection system (take a look at the previous chapter if this looks
unfamiliar):

code/redux/redux-chat/src/app/app.store.ts

1 import { InjectionToken } from '@angular/core';

2 import {

3 createStore,

4 Store,

5 compose,

6 StoreEnhancer

7 } from 'redux';

8

9 import {

10 AppState,

11 default as reducer

12 } from './app.reducer';

13

14 export const AppStore = new InjectionToken('App.store');

15

16 const devtools: StoreEnhancer<AppState> =

17 window['devToolsExtension'] ?

18 window['devToolsExtension']() : f => f;

19

20 export function createAppStore(): Store<AppState> {

21 return createStore<AppState>(

22 reducer,

23 compose(devtools)

24);

25 }

26

27 export const appStoreProviders = [

28 { provide: AppStore, useFactory: createAppStore }

29];

The top-level AppComponent

Our AppComponent component is the top-level component. It doesn’t do much other
than render the ChatPage.

Intermediate Redux in Angular 446

code/redux/redux-chat/src/app/app.component.ts

1 import { Component, Inject } from '@angular/core';

2 import * as Redux from 'redux';

3

4 import { AppStore } from './app.store';

5 import { AppState } from './app.reducer';

6 import { ChatExampleData } from './data/chat-example-data';

7

8 @Component({

9 selector: 'app-root',

10 templateUrl: './app.component.html',

11 styleUrls: ['./app.component.css']

12 })

13 export class AppComponent {

14 constructor(@Inject(AppStore) private store: Redux.Store<AppState>) {

15 ChatExampleData(store);

16 }

17 }

and the template:

code/redux/redux-chat/src/app/app.component.html

1 <div>

2 <chat-page></chat-page>

3 </div>

For this app the bots operate on data on the client and are not connected
to a server. The function ChatExampleData() sets up the initial data for the
app. We won’t be covering this code in detail in the book, so feel free to
look at the code on disk if you want to learn more about how it works.

We’re not using a router in this app, but if we were, we would put it here at the top
level of the app. For now, we’re going to create a ChatPagewhich will render the bulk
of our app.

We don’t have any other pages in this app, but it’s a good idea to give each page it’s
own component in case we add some in the future.

Intermediate Redux in Angular 447

The ChatPage

Our chat page renders our three main components:

• ChatNavBarComponent

• ChatThreadsComponent and
• ChatWindowComponent

Here it is in code:

code/redux/redux-chat/src/app/chat-page/chat-page.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'chat-page',

5 templateUrl: './chat-page.component.html',

6 styleUrls: ['./chat-page.component.css']

7 })

8 export class ChatPageComponent implements OnInit {

9 constructor() { }

10 ngOnInit() { }

11 }

and the template:

code/redux/redux-chat/src/app/chat-page/chat-page.component.html

1 <div>

2 <chat-nav-bar></chat-nav-bar>

3 <div class="container">

4 <chat-threads></chat-threads>

5 <chat-window></chat-window>

6 </div>

7 </div>

For this app we are using a design pattern called container components and these
three components are all container components. Let’s talk about what that means.

Intermediate Redux in Angular 448

Container vs. Presentational Components

It is hard to reason about our apps if there is data spread throughout all of our
components. However, our apps are dynamic - they need to be populated with
runtime data and they need to be responsive to user interaction.

One of the patterns that has emerged in managing this tension is the idea of
presentational vs. container components. The idea is this:

1. You want to minimize the number of components which interact with outside
data sources. (e.g. APIs, the Redux Store, Cookies etc.)

2. Therefore deliberately put data access into “container” components and
3. Require purely ‘functional’ presentation components to have all of their prop-

erties (inputs and outputs) managed by container components.

The great thing about this design is that presentational components are predictable.
They’re reusable because they don’t make assumptions about your overall data-
architecture, they only give requirements for their own use.

But even beyond reuse, they’re predictable. Given the same inputs, they always
return the same outputs (e.g. render the same way).

If you squint, you can see that the philosophy that requires reducers to
be pure functions is the same that requires presentational components be
‘pure components’

It would be great if our entire app could be all presentational components, but of
course, the real world has messy, changing data. So we try to put this complexity of
adapting our real-world data into our container components.

Intermediate Redux in Angular 449

If you’re an advanced programmer you may see that there is a loose
analogy between MVC and container/presentation components. That is,
the presentational component is sort of a “view” of data that is passed in.
A container component is sort of a “controller” in that it takes the “model”
(the data from the rest of the app) and adapts it for the presentational
components.

That said, if you haven’t been programming very long, take this analogy
with a grain of salt as Angular components are already a view and a
controller themselves.

In our app the container components are going to be the components which interact
with the store. This means our container components will be anything that:

1. Reads data from the store
2. Subscribes to the store for changes
3. Dispatches actions to the store

Our three main components are container components and anything below them
will be presentational (i.e. functional / pure / not interact with the store).

Let’s build our first container component, the nav bar.

Building the ChatNavBarComponent

In the nav bar we’ll show an unread messages count to the user.

The Unread Count in the ChatNavBarComponent

The best way to try out the unread messages count is to use the “Waiting
Bot”. If you haven’t already, try sending the message ‘3’ to the Waiting
Bot and then switch to another window. The Waiting Bot will then wait 3
seconds before sending you amessage and youwill see the unreadmessages
counter increment.

Intermediate Redux in Angular 450

Let’s look at the component code first:

code/redux/redux-chat/src/app/chat-nav-bar/chat-nav-bar.component.ts

1 import { Component, Inject } from '@angular/core';

2 import { AppStore } from '../app.store';

3 import * as Redux from 'redux';

4 import {

5 AppState,

6 getUnreadMessagesCount

7 } from '../app.reducer';

8

9 @Component({

10 selector: 'chat-nav-bar',

11 templateUrl: './chat-nav-bar.component.html',

12 styleUrls: ['./chat-nav-bar.component.css']

13 })

14 export class ChatNavBarComponent {

15 unreadMessagesCount: number;

16

17 constructor(@Inject(AppStore) private store: Redux.Store<AppState>) {

18 store.subscribe(() => this.updateState());

19 this.updateState();

20 }

21

22 updateState() {

23 this.unreadMessagesCount = getUnreadMessagesCount(this.store.getState());

24 }

25 }

and the template:

code/redux/redux-chat/src/app/chat-nav-bar/chat-nav-bar.component.html

1 <nav class="navbar navbar-default">

2 <div class="container-fluid">

3 <div class="navbar-header">

4

5

6 ng-book

7

8 </div>

9 <p class="navbar-text navbar-right">

10 <button class="btn btn-primary" type="button">

Intermediate Redux in Angular 451

11 Messages {{ unreadMessagesCount }}

12 </button>

13 </p>

14 </div>

15 </nav>

Our template gives us the DOM structure and CSS necessary for rending a nav bar
(these CSS-classes come from the CSS framework Bootstrap).

The only variable we’re showing in this template is unreadMessagesCount.

Our ChatNavBarComponent has unreadMessagesCount as an instance variable. This
number will be set to the sum of unread messages in all threads.

Notice in our constructor we do three things:

1. Inject our store
2. Subscribe to any changes in the store
3. Call this.updateState()

We call this.updateState() after subscribe because we want to make sure this
component is initialized with the most recent data. subscribe will only be called if
something changes after this component is initialized.

updateState() is the most interesting function - we set unreadMessagesCount to the
value of the function getUnreadMessagesCount. What is getUnreadMessagesCount

and where did it come from?

getUnreadMessagesCount is a new concept called selectors.

Redux Selectors

Thinking about our AppState, how might we go about getting the unread messages
count? How about something like this:

Intermediate Redux in Angular 452

// get the state

let state = this.store.getState();

// get the threads state

let threadsState = state.threads;

// get the entities from the threads

let threadsEntities = threadsState.entities;

// get all of the threads from state

let allThreads = Object.keys(threadsEntities)

.map((threadId) => entities[threadId]);

// iterate over all threads and ...

let unreadCount = allThreads.reduce(

(unreadCount: number, thread: Thread) => {

// foreach message in that thread

thread.messages.forEach((message: Message) => {

if (!message.isRead) {

// if it's unread, increment unread count

++unreadCount;

}

});

return unreadCount;

},

0);

Should we put this logic in the ChatNavBarComponent? There’s two problems with
that approach:

1. This chunk of code reaches deep into our AppState. A better approach would
be to co-locate this logic next to where the state itself is written.

2. What if we need the unread count somewhere else in the app? How could we
share this logic?

Solving these problems is the idea behind selectors.

Selectors are functions that take a part of the state and return a value.

Let’s take a look at how to make a few selectors.

Intermediate Redux in Angular 453

Threads Selectors

Let’s start with an easy one. Say we have our AppState and we want to get the
ThreadsState:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

122 export const getThreadsState = (state): ThreadsState => state.threads;

Pretty easy, right? Here we’re saying, given the top-level AppState, we can find the
ThreadsState at state.threads.

Let’s say that we want to get the current thread. We could do it like this:

const getCurrentThread = (state: AppState): Thread => {

let currentThreadId = state.threads.currentThreadId;

return state.threads.entities[currentThreadId];

}

For this small example, this selector works fine. But it’s worth thinking about howwe
can make our selectors maintainable as the app grows. It would be nice if we could
use selectors to query other selectors. It also would be nice to be able to specify a
selector that has multiple selectors as a dependency.

This is what the reselect¹²⁸ library provides. With reselect we can create small,
focused selectors and then combine them together into bigger functionality.

Let’s look at howwewill get the current thread using createSelector from reselect.

code/redux/redux-chat/src/app/thread/threads.reducer.ts

124 export const getThreadsEntities = createSelector(

125 getThreadsState,

126 (state: ThreadsState) => state.entities);

We start by writing getThreadsEntities. getThreadsEntities uses createSelector
and passes two arguments:

1. getThreadsState, the selector we defined above and

¹²⁸https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc

https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc
https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc

Intermediate Redux in Angular 454

2. A callback function which will receive the value of the selector in #1 and return
the value we want to select.

This might seem like a lot of overhead to call state.entities, but it sets us up for
a much more maintainable selectors down the line. Let’s look at getCurrentThread
using createSelector:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

147 export const getCurrentThread = createSelector(

148 getThreadsEntities,

149 getThreadsState,

150 (entities: ThreadsEntities, state: ThreadsState) =>

151 entities[state.currentThreadId]);

Notice here that we’re citing two selectors as dependencies: getThreadsEntities and
getThreadsState - when these selectors resolve they become the arguments to the
callback function. We can then combine them together to return the selected thread.

Unread Messages Count Selector

Now that we understand how selectors work, let’s create a selector that will
get the number of unread messages. If you look at our first attempt at unread
messages above, we can see that each variable could instead become it’s own selector
(getThreadsState, getThreadsEntities, etc.)

Here’s a selector that will get all Threads:

code/redux/redux-chat/src/app/thread/threads.reducer.ts

128 export const getAllThreads = createSelector(

129 getThreadsEntities,

130 (entities: ThreadsEntities) => Object.keys(entities)

131 .map((threadId) => entities[threadId]));

And then given all of the threads, we can get the sum of the unread messages over
all threads:

Intermediate Redux in Angular 455

code/redux/redux-chat/src/app/thread/threads.reducer.ts

133 export const getUnreadMessagesCount = createSelector(

134 getAllThreads,

135 (threads: Thread[]) => threads.reduce(

136 (unreadCount: number, thread: Thread) => {

137 thread.messages.forEach((message: Message) => {

138 if (!message.isRead) {

139 ++unreadCount;

140 }

141 });

142 return unreadCount;

143 },

144 0));

Now that we have this selector, we can use it to get the number of unread messages
in our ChatNavBarComponent (and anywhere else in our app where we might need
it).

Building the ChatThreadsComponent

Next let’s build our thread list in the ChatThreadsComponent.

Time Ordered List of Threads

Intermediate Redux in Angular 456

ChatThreadsComponent Controller

Let’s take a look at our component controller ChatThreadsComponent before we look
at the template:

code/redux/redux-chat/src/app/chat-threads/chat-threads.component.ts

1 import {

2 Component,

3 OnInit,

4 Inject

5 } from '@angular/core';

6 import { AppStore } from '../app.store';

7 import * as Redux from 'redux';

8 import {

9 Thread

10 } from '../thread/thread.model';

11 import * as ThreadActions from '../thread/thread.actions';

12 import {

13 AppState,

14 getCurrentThread,

15 getAllThreads

16 } from '../app.reducer';

17

18 @Component({

19 selector: 'chat-threads',

20 templateUrl: './chat-threads.component.html',

21 styleUrls: ['./chat-threads.component.css']

22 })

23 export class ChatThreadsComponent {

24 threads: Thread[];

25 currentThreadId: string;

26

27 constructor(@Inject(AppStore) private store: Redux.Store<AppState>) {

28 store.subscribe(() => this.updateState());

29 this.updateState();

30 }

31

32 updateState() {

33 const state = this.store.getState();

34

35 // Store the threads list

36 this.threads = getAllThreads(state);

37

Intermediate Redux in Angular 457

38 // We want to mark the current thread as selected,

39 // so we store the currentThreadId as a value

40 this.currentThreadId = getCurrentThread(state).id;

41 }

42

43 handleThreadClicked(thread: Thread) {

44 this.store.dispatch(ThreadActions.selectThread(thread));

45 }

46 }

We’re storing two instance variables on this component:

• threads - the list of Threads
• currentThreadId - the current thread (conversation) that the user is participat-
ing in

In our constructor we keep a reference to the Redux store and subscribe to updates.
When the store changes, we call updateState().

updateState() keeps our instance variables in sync with the Redux store. Notice that
we’re using two selectors:

• getAllThreads and
• getCurrentThread

which keep their respective instance variables up to date.

The one new idea we’ve added is an event handler: handleThreadClicked. han-
dleThreadClickedwill dispatch the selectThread action. The idea here is that when
a thread is clicked on, we’ll tell our store to set this new thread as the selected thread
and the rest of the application should update in turn.

ChatThreadsComponent template

Let’s look at the ChatThreadsComponent template and its configuration:

Intermediate Redux in Angular 458

code/redux/redux-chat/src/app/chat-threads/chat-threads.component.html
1 <!-- conversations -->

2 <div class="row">

3 <div class="conversation-wrap">

4 <chat-thread

5 *ngFor="let thread of threads"

6 [thread]="thread"

7 [selected]="thread.id === currentThreadId"

8 (onThreadSelected)="handleThreadClicked($event)">

9 </chat-thread>

10 </div>

11 </div>

In our template we’re using ngFor to iterate over our threads. We’re using a new
directive to render the individual threads called ChatThreadComponent.

ChatThreadComponent is a presentational component. We won’t be able to access
the store in ChatThreadComponent, neither for fetching data nor dispatching actions.
Instead, we’re going to pass everything we need to this component through inputs

and handle any interaction through outputs.

We’ll look at the implementation of ChatThreadComponent next, but look at the inputs
and outputs we have in this template first.

• We’re sending the input [thread] with the individual thread
• On the input [selected] we’re passing a boolean which indicates if this thread
(thread.id) is the “current” thread (currentThreadId)

• If the thread is clicked, we will emit the output event (onThreadSelected)
- when this happens we’ll call handleThreadClicked() (which dispatches a
thread selected event to the store).

Let’s dig in to the ChatThreadComponent.

The Single ChatThreadComponent

The ChatThreadComponent will be used to display a single thread in the list of
threads. Remember that ChatThreadComponent is a presentational component - it
doesn’t manipulate any data that isn’t given to it directly.

Here’s the component controller code:

Intermediate Redux in Angular 459

code/redux/redux-chat/src/app/chat-thread/chat-thread.component.ts

1 import {

2 Component,

3 OnInit,

4 Input,

5 Output,

6 EventEmitter

7 } from '@angular/core';

8 import { Thread } from '../thread/thread.model';

9

10 @Component({

11 selector: 'chat-thread',

12 templateUrl: './chat-thread.component.html',

13 styleUrls: ['./chat-thread.component.css']

14 })

15 export class ChatThreadComponent implements OnInit {

16 @Input() thread: Thread;

17 @Input() selected: boolean;

18 @Output() onThreadSelected: EventEmitter<Thread>;

19

20 constructor() {

21 this.onThreadSelected = new EventEmitter<Thread>();

22 }

23

24 ngOnInit() { }

25

26 clicked(event: any): void {

27 this.onThreadSelected.emit(this.thread);

28 event.preventDefault();

29 }

30 }

The main thing to look at here is the onThreadSelected EventEmitter. If you haven’t
used EventEmitters much, the idea is that it’s an implementation of the observer
pattern. We use it as the “output channel” for this component - when we want to
send data we call onThreadSelected.emit and pass whatever data we want along
with it.

In this case, we want to emit the current thread as the argument to the EventEmitter.
When this element is clicked, we will call onThreadSelected.emit(this.thread)
which will trigger the callback in our parent (ChatThreadsComponent) component.

Intermediate Redux in Angular 460

Here is where we specify our @Input()s of thread and selected, as well as the
@Output() of onThreadSelected.

ChatThreadComponent template

Here’s the code for our @Component decorator and template:

code/redux/redux-chat/src/app/chat-thread/chat-thread.component.html

1 <div class="media conversation">

2 <div class="pull-left">

3 <img class="media-object avatar"

4 src="{{thread.avatarSrc}}">

5 </div>

6 <div class="media-body">

7 <h5 class="media-heading contact-name">{{thread.name}}

8 •

9 </h5>

10 <small class="message-preview">

11 {{thread.messages[thread.messages.length - 1].text}}

12 </small>

13 </div>

14 <a (click)="clicked($event)" class="div-link">Select

15 </div>

Notice that in our viewwe’ve got some straight-forward bindings like {{thread.avatarSrc}},
{{thread.name}}. In the message-preview tag we’ve got the following:

{{ thread.messages[thread.messages.length - 1].text }}

This gets the last message in the thread and displays the text of that message. The
idea is we are showing a preview of the most recent message in that thread.

We’ve got an *ngIf which will show the • symbol only if this is the selected
thread.

Lastly, we’re binding to the (click) event to call our clicked() handler. Notice that
when we call clicked we’re passing the argument $event. This is a special variable
provided by Angular that describes the event. We use that in our clicked handler
by calling event.preventDefault();. This makes sure that we don’t navigate to a
different page.

Intermediate Redux in Angular 461

Building the ChatWindowComponent

The ChatWindowComponent is the most complicated component in our app. Let’s take
it one section at a time:

The Chat Window

Our ChatWindowComponent class has three properties: currentThread (which holds a
Thread (that contains Message[] as a property), draftMessage, and currentUser:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

23 export class ChatWindowComponent {

24 currentThread: Thread;

25 draftMessage: { text: string };

26 currentUser: User;

Here’s a diagram of where each one is used:

Intermediate Redux in Angular 462

Chat Window Properties

In our constructor we’re going to inject two things:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

28 constructor(@Inject(AppStore) private store: Redux.Store<AppState>,

29 private el: ElementRef) {

30 store.subscribe(() => this.updateState());

31 this.updateState();

32 this.draftMessage = { text: '' };

33 }

The first is our Redux Store. The second, el is an ElementRef which we can use to
get access to the host DOM element. We’ll use that when we scroll to the bottom of
the chat window when we create and receive new messages.

In our constructor we subscribe to our store, as we have in our other container
components.

The next thing we do is to set a default draftMessage with an empty string for the

Intermediate Redux in Angular 463

text. We’ll use the draftMessage to keep track of the input box as the user is typing
their message.

ChatWindowComponent updateState()

When the store changes we will update the instance variables for this component:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

35 updateState() {

36 const state = this.store.getState();

37 this.currentThread = getCurrentThread(state);

38 this.currentUser = getCurrentUser(state);

39 this.scrollToBottom();

40 }

Here we store the current thread and the current user. If a new message comes
in, we also want to scroll to the bottom of the window. It’s a bit coarse to call
scrollToBottom here, but it’s a simple way to make sure that the user doesn’t have
to scroll manually each time there is a new message (or they switch to a new thread).

ChatWindowComponent scrollToBottom()

To scroll to the bottom of the chat window, we’re going to use the ElementRef el

that we saved in the constructor. To make this element scroll, we’re going to set the
scrollTop property of our host element:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

42 scrollToBottom(): void {

43 const scrollPane: any = this.el

44 .nativeElement.querySelector('.msg-container-base');

45 if (scrollPane) {

46 setTimeout(() => scrollPane.scrollTop = scrollPane.scrollHeight);

47 }

48 }

Intermediate Redux in Angular 464

Why do we have the setTimeout?

If we call scrollToBottom immediately when we get a new message then
what happens is we scroll to the bottom before the newmessage is rendered.
By using a setTimeout we’re telling JavaScript that we want to run this
function when it is finished with the current execution queue. This happens
after the component is rendered, so it does what we want.

ChatWindowComponent sendMessage

When we want to send a new message, we’ll do it by taking:

• The current thread
• The current user
• The draft message text

And then dispatching a new addMessage action on the store. Here’s what it looks like
in code:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

50 sendMessage(): void {

51 this.store.dispatch(ThreadActions.addMessage(

52 this.currentThread,

53 {

54 author: this.currentUser,

55 isRead: true,

56 text: this.draftMessage.text

57 }

58));

59 this.draftMessage = { text: '' };

60 }

The sendMessage function above takes the draftMessage, sets the author and thread

using our component properties. Every message we send has “been read” already (we
wrote it) so we mark it as read.

After we dispatch the message, we create a new Message** and set that new Message

to this.draftMessage. This will clear the search box, and by creating a new object
we ensure we don’t mutate the message that was sent to the store.

Intermediate Redux in Angular 465

ChatWindowComponent onEnter

In our view, we want to send the message in two scenarios

1. the user hits the “Send” button or
2. the user hits the Enter (or Return) key.

Let’s define a function that will handle both events:

code/redux/redux-chat/src/app/chat-window/chat-window.component.ts

62 onEnter(event: any): void {

63 this.sendMessage();

64 event.preventDefault();

65 }

We create this onEnter event handler as a separate function from
sendMessage because onEnter will accept an event as an argument and
then call event.preventDefault(). This way we could call sendMessage in
scenarios other than in response to a browser event. In this case, we’re not
really calling sendMessage in any other situation, but I find that it’s nice to
separate the event handler from the function that ‘does the work’.

That is, a sendMessage function that also 1. requires an event to be passed
to it and 2. handles that event feels like a function that may be handling
too many concerns.

Now that we’ve handled the controller code, let’s look at the template

ChatWindowComponent template

We start our template by opening the panel tags: and showing the chat name in the
header:

Intermediate Redux in Angular 466

code/redux/redux-chat/src/app/chat-window/chat-window.component.html
1 <div class="chat-window-container">

2 <div class="chat-window">

3 <div class="panel-container">

4 <div class="panel panel-default">

5

6 <div class="panel-heading top-bar">

7 <div class="panel-title-container">

8 <h3 class="panel-title">

9

10 Chat - {{currentThread.name}}

11 </h3>

12 </div>

13 <div class="panel-buttons-container" >

14 <!-- you could put minimize or close buttons here -->

15 </div>

16 </div>

17

18 <div class="panel-body msg-container-base">

19 <chat-message

20 *ngFor="let message of currentThread.messages"

21 [message]="message">

22 </chat-message>

23 </div>

24

25 <div class="panel-footer">

26 <div class="input-group">

27 <input type="text"

28 class="chat-input"

29 placeholder="Write your message here..."

30 (keydown.enter)="onEnter($event)"

31 [(ngModel)]="draftMessage.text" />

32

33 <button class="btn-chat"

34 (click)="onEnter($event)"

35 >Send</button>

36

37 </div>

38 </div>

39

40 </div>

41 </div>

42 </div>

43 </div>

Intermediate Redux in Angular 467

Next we show the list of messages. Here we use ngFor to iterate over our list of
messages. We’ll describe the individual chat-message component in a minute.

code/redux/redux-chat/src/app/chat-window/chat-window.component.html
18 <div class="panel-body msg-container-base">

19 <chat-message

20 *ngFor="let message of currentThread.messages"

21 [message]="message">

22 </chat-message>

23 </div>

Lastly we have the message input box and closing tags:

code/redux/redux-chat/src/app/chat-window/chat-window.component.html
25 <div class="panel-footer">

26 <div class="input-group">

27 <input type="text"

28 class="chat-input"

29 placeholder="Write your message here..."

30 (keydown.enter)="onEnter($event)"

31 [(ngModel)]="draftMessage.text" />

32

33 <button class="btn-chat"

34 (click)="onEnter($event)"

35 >Send</button>

36

37 </div>

38 </div>

39

40 </div>

41 </div>

42 </div>

The message input box is the most interesting part of this view, so let’s talk about
two interesting properties: 1. (keydown.enter) and 2. [(ngModel)].

Handling keystrokes

Angular provides a straightforward way to handle keyboard actions: we bind to
the event on an element. In this case, we’re binding to keydown.enter which says
if “Enter” is pressed, call the function in the expression, which in this case is
onEnter($event).

Intermediate Redux in Angular 468

code/redux/redux-chat/src/app/chat-window/chat-window.component.html

27 <input type="text"

28 class="chat-input"

29 placeholder="Write your message here..."

30 (keydown.enter)="onEnter($event)"

31 [(ngModel)]="draftMessage.text" />

Using ngModel

As we’ve talked about before, we don’t generally use two-way data binding as the
crux of our data architecture (like we might have in Angular 1). This is particularly
true when we’re using Redux which is strictly a one-way data flow.

However it can be very useful to have a two-way binding between a component and
its view. As long as the side-effects are kept local to the component, it can be a very
convenient way to keep a component property in sync with the view.

In this case, we’re establishing a two-way bind between the value of the input tag
and draftMessage.text. That is, if we type into the input tag, draftMessage.text
will automatically be set to the value of that input. Likewise, if we were to update
draftMessage.text in our code, the value in the input tag would change in the view.

Clicking “Send”

On our “Send” button we bind the (click) property to the onEnter function of our
component:

code/redux/redux-chat/src/app/chat-window/chat-window.component.html

33 <button class="btn-chat"

34 (click)="onEnter($event)"

35 >Send</button>

We’re using the same onEnter function to handle the events which should send the
draft message for both the button and hitting the enter button.

Intermediate Redux in Angular 469

The ChatMessageComponent

Instead of putting the rendering code for each individual message in this component,
instead we’re going to create another presentational component ChatMessageCompo-
nent.

Tip: If you’re using ngFor that’s a good indication you should create a new
component.

Each Message is rendered by the ChatMessageComponent.

The ChatMessageComponent

This component is relatively straightforward. The main logic here is rendering a
slightly different view depending on if the message was authored by the current user.
If the Message was not written by the current user, then we consider the message
incoming.

Intermediate Redux in Angular 470

Setting incoming

Remember that each ChatMessageComponent belongs to one Message. So in ngOnInit

we will set incoming depending on if this Message was written by the current user:

code/redux/redux-chat/src/app/chat-message/chat-message.component.ts

1 import {

2 Component,

3 OnInit,

4 Input

5 } from '@angular/core';

6 import { Message } from '../message/message.model';

7

8 @Component({

9 selector: 'chat-message',

10 templateUrl: './chat-message.component.html',

11 styleUrls: ['./chat-message.component.css']

12 })

13 export class ChatMessageComponent implements OnInit {

14 @Input() message: Message;

15 incoming: boolean;

16

17 ngOnInit(): void {

18 this.incoming = !this.message.author.isClient;

19 }

20 }

The ChatMessageComponent template

In our template we have two interesting ideas:

1. the FromNowPipe
2. [ngClass]

First, here’s the code:

Intermediate Redux in Angular 471

code/redux/redux-chat/src/app/chat-message/chat-message.component.html

1 <div class="msg-container"

2 [ngClass]="{'base-sent': !incoming, 'base-receive': incoming}">

3

4 <div class="avatar"

5 *ngIf="!incoming">

6

7 </div>

8

9 <div class="messages"

10 [ngClass]="{'msg-sent': !incoming, 'msg-receive': incoming}">

11 <p>{{message.text}}</p>

12 <p class="time">{{message.sender}} • {{message.sentAt | fromNow}}</p>

13 </div>

14

15 <div class="avatar"

16 *ngIf="incoming">

17

18 </div>

19 </div>

The FromNowPipe is a pipe that casts our Messages sent-at time to a human-readable “x
seconds ago” message. You can see that we use it by: {{message.sentAt | fromNow}}

FromNowPipe uses the excellent moment.js¹²⁹ library.
You can read the source of the FromNowPipe in
code/redux/redux-chat/src/app/pipes/from-now.pipe.ts

We also make extensive use of ngClass in this view. The idea is, when we say:

[ngClass]="{'msg-sent': !incoming, 'msg-receive': incoming}"

We’re asking Angular to apply the msg-receive class if incoming is truthy (and apply
msg-sent if incoming is falsey).

By using the incoming property, we’re able to display incoming and outgoing
messages differently.

¹²⁹http://momentjs.com/

http://momentjs.com/
http://momentjs.com/

Intermediate Redux in Angular 472

Summary

There we go, if we put them all together we’ve got a fully functional chat app!

Completed Chat Application

If you checkout code/redux/redux-chat/src/app/data/chat-example-data.ts you’ll
see we’ve written a handful of bots for you that you can chat with. Checkout the code
and try writing a few bots of your own!

Advanced Components
Throughout this book, we’ve learned how to use Angular’s built-in directives and
how to create components of our own. In this chapter we’ll take a deep dive into
advanced features we can use to make components.

In this chapter we’ll learn the following concepts:

• Styling components (with encapsulation)
• Modifying host DOM elements
• Modifying templates with content projection
• Accessing neighbor directives
• Using lifecycle hooks
• Detecting changes

How to Use This Chapter

This chapter gives a tour of advanced Angular APIs. It’s assumed the reader
is familiar with the basics of creating components, using built-in directives,
and organizing component files.

As this is an intermediate/advanced level chapter, it’s assumed the reader
is able to fill in some of the basics (such as importing dependencies).

This chapter comes with runnable code, found in the advanced-components
folder. If at any time you feel you’re lacking context, checkout the example
code for this chapter.

To run the demos in this chapter, change into the project folder and run:

1 npm install

2 npm start

Then open your browser to http://localhost:4200

Advanced Components 474

Styling

Angular provides a mechanism for specifying component-specific styles. CSS stands
for cascading style sheet, but sometimes we don’twant the cascade. Instead we want
to provide styles for a component that won’t leak out into the rest of our page.

Angular provides two attributes that allow us to define CSS classes for our compo-
nent.

To define the style for our component, we use the View attribute styles to define in-
line styles, or styleUrls, to use external CSS files.We can also declare those attributes
directly on the Component decorator.

Let’s write a component that uses inline styles:

code/advanced-components/src/app/styling/inline-style/inline-style.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-inline-style',

5 styles: [`

6 .highlight {

7 border: 2px solid red;

8 background-color: yellow;

9 text-align: center;

10 margin-bottom: 20px;

11 }

12 `],

13 template: `

14 <h4 class="ui horizontal divider header">

15 Inline style example

16 </h4>

17

18 <div class="highlight">

19 This uses component <code>styles</code>

20 property

21 </div>

22 `

23 })

24 export class InlineStyleComponent {

25 }

Advanced Components 475

In this example we defined the styles we want to use by declaring the .highlight

class as an item on the array on the styles parameter.

Further on in the templatewe reference that class on the div using <div class="highlight">.

And the result is exactly what we expect - a div with a red border and yellow
background:

Example of component using styles

Another way to declare CSS classes is to use the styleUrls property. This allows us
to declare our CSS in an external file and just reference them from the component.

Let’s write another component that uses this, but first let’s create a file called
external.css with the following class:

code/advanced-components/src/app/styling/external-style/external-style.component.css

1 .highlight {

2 border: 2px dotted red;

3 text-align: center;

4 margin-bottom: 20px;

5 }

Then we can write the code that references it:

code/advanced-components/src/app/styling/external-style/external-style.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-external-style',

5 styleUrls: ['./external-style.component.css'],

6 template: `

7 <h4 class="ui horizontal divider header">

8 External style example

9 </h4>

10

11 <div class="highlight">

Advanced Components 476

12 This uses component <code>styleUrls</code>

13 property

14 </div>

15 `

16 })

17 export class ExternalStyleComponent {

18 }

And when we load the page, we see our div with a dotted border:

Example of component using styleUrls

View (Style) Encapsulation

One interesting thing about this example is that both components define a class called
highlight with different properties, but the attributes of one didn’t leak into the
other.

This happens because Angular styles are encapsulated by the component context
by default. If we inspect the page and expand the <head>, we’ll notice that Angular
injected a <style> tag with our style:

Advanced Components 477

Injected style

You’ll also notice that the CSS class has been scoped with _ngcontent-hve-2:

1 .highlight[_ngcontent-hve-2] {

2 border: 2px solid red;

3 background-color: yellow;

4 text-align: center;

5 margin-bottom: 20px;

6 }

And if we check how our <div> is rendered, you’ll find that _ng-content-hve-2 was
added:

Advanced Components 478

Injected style

The same thing happens for our external style:

Advanced Components 479

External style

and:

Advanced Components 480

External style

Angular allows us to change this behavior, by using the encapsulation property.

This property can have the following values, defined by the ViewEncapsulation

enum:

• Emulated - this is the default option and it will encapsulate the styles using the
technique we just explained above

• Native - with this option, Angular will use the Shadow DOM (more on this
below)

• None - with this option set, Angular won’t encapsulate the styles at all, allowing
them to leak to other elements on the page

Advanced Components 481

Shadow DOM Encapsulation

You might be wondering: what is the point of using the Shadow DOM? By using
the Shadow DOM the component uses a unique DOM tree that is hidden from the
other elements on the page. This allows styles defined within that element to be
invisible to the rest of the page.

For a deep dive into Shadow DOM, please check this guide by Eric
Bidelman¹³⁰.

Let’s create another component that uses the Native encapsulation (Shadow DOM)
to understand how this works:

code/advanced-components/src/app/styling/native-encapsulation/native-encapsula-
tion.component.ts

1 import {

2 Component,

3 ViewEncapsulation

4 } from '@angular/core';

5

6 @Component({

7 selector: 'app-native-encapsulation',

8 styles: [`

9 .highlight {

10 text-align: center;

11 border: 2px solid black;

12 border-radius: 3px;

13 margin-botton: 20px;

14 }`],

15 template: `

16 <h4 class="ui horizontal divider header">

17 Native encapsulation example

18 </h4>

19

20 <div class="highlight">

21 This component uses <code>ViewEncapsulation.Native</code>

22 </div>

23 `,

24 encapsulation: ViewEncapsulation.Native

¹³⁰http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/

http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/

Advanced Components 482

25 })

26 export class NativeEncapsulationComponent {

27 }

In this case, if we inspect the source code, we’ll see:

Native encapsulation

Everything inside the #shadow-root element has been encapsulated and isolated from
the rest of the page.

No Encapsulation

Finally, if we create a component that specifies ViewEncapsulation.None, no style
encapsulation will be added:

Advanced Components 483

code/advanced-components/src/app/styling/no-encapsulation/no-encapsulation.component.ts

1 import {

2 Component,

3 ViewEncapsulation

4 } from '@angular/core';

5

6 @Component({

7 selector: 'app-no-encapsulation',

8 styles: [`

9 .highlight {

10 border: 2px dashed red;

11 text-align: center;

12 margin-bottom: 20px;

13 }

14 `],

15 template: `

16 <h4 class="ui horizontal divider header">

17 No encapsulation example

18 </h4>

19

20 <div class="highlight">

21 This component uses <code>ViewEncapsulation.None</code>

22 </div>

23 `,

24 encapsulation: ViewEncapsulation.None

25 })

26 export class NoEncapsulationComponent {

27 }

When we inspect the element:

Advanced Components 484

No encapsulation

We can see that nothing was injected on the HTML. Also on the header we can
find that the <style> tag was also injected exactly like we defined on the styles

parameter:

1 .highlight {

2 border: 2px dashed red;

3 text-align: center;

4 margin-bottom: 20px;

5 }

One side-effect of using ViewEncapsulation.None is that, since we don’t have any
encapsulation, this style “leaks” into other components. If we check the picture
above, the ViewEncapsulation.Native component style was affected by this new
component’s style. But sometimes this can be exactly what you want.

Advanced Components 485

You can comment out the <app-no-encapsulation></app-no-encapsulation> code
on the StyleSampleApp template to see the difference.

Creating a Popup - Referencing and Modifying
Host Elements

The host element is the element to which the directive or component is bound.
Sometimes we have a component that needs to attach markup or behavior to its
host element.

In this example, we’re going to create a Popup directive that will attach behavior to
its host element which will display a message when clicked.

Components vs. Directives - What’s the dif-
ference?
Components and directives are closely related, but they are slightly differ-
ent.

You may have heard that “components are directives with a view”. This
isn’t exactly true. Components come with functionality that makes it easy
to add views, but directives can have views too. In fact, components are
implemented with directives.

One great example of a directive that renders a conditional view is NgIf.

But we can attach behaviors to an elementwithout a template by using a
directive.

Think of it this way: Components are Directives and Components always
have a view. Directives may or may not have a view.

If you choose to render a view (a template) in your Directive, you can have
more control over how that template is rendered. We’ll talk more about
how to use that control later in this chapter.

Advanced Components 486

Popup Structure

Now let’s write our first directive. We want this directive to show an alert when
we click a DOM element that includes the attribute popup. The message displayed
will be identified by the element’s message attribute.

Here’s what we want it to look like:

1 <element popup message="Some message"></element>

In order to make this directive work, there are a couple of things we need to do:

• receive the message attribute from the host
• be notified when the host element is clicked

Let’s start coding our directive:

code/advanced-components/src/app/host/popup-demo/steps/host-1.ts

11 @Directive({

12 selector: '[popup]'

13 })

14 export class PopupDirective {

15 constructor() {

16 console.log('Directive bound');

17 }

18 }

We use the Directive decorator and set the selector option to [popup]. This will
make this directive bind to any elements that define the popup attribute.

Now let’s create an app that has an element that has the popup attribute:

Advanced Components 487

code/advanced-components/src/app/host/popup-demo/steps/host-1.ts

20 @Component({

21 selector: 'app-popup-demo',

22 template: `

23 <div class="ui message" popup>

24 <div class="header">

25 Learning Directives

26 </div>

27

28 <p>

29 This should use our Popup diretive

30 </p>

31 </div>

32 `

33 })

34 export class PopupDemoComponent1 {

35 }

When we run this application, we expect the message Directive bound to be logged
on the console, indicating we have successfully bound to the first <div> in our
template:

Advanced Components 488

Binding to host element

Using ElementRef

If we want to learn more about the host element a directive is bound to, we can use
the built-in ElementRef class.

This class holds the information about a given Angular element, including the native
DOM element using the nativeElement property.

In order to see the elements our directive is binding to, we can change our directive
constructor to receive the ElementRef and log it to the console:

Advanced Components 489

code/advanced-components/src/app/host/popup-demo/steps/host-2.ts

9 import { Component, Directive, ElementRef } from '@angular/core';

10

11 @Directive({

12 selector: '[popup]'

13 })

14 export class PopupDirective {

15 constructor(_elementRef: ElementRef) {

16 console.log(_elementRef);

17 }

18 }

We can also add a second element to the page that uses our directive, so we can see
two different ElementRefs logged to the console:

code/advanced-components/src/app/host/popup-demo/steps/host-2.ts

20 @Component({

21 selector: 'app-pop-demo',

22 template: `

23 <div class="ui message" popup>

24 <div class="header">

25 Learning Directives

26 </div>

27

28 <p>

29 This should use our Popup diretive

30 </p>

31 </div>

32

33 <i class="alarm icon" popup></i>

34 `

35 })

36 export class PopupDemoComponent2 {

37 }

When we run our app now, we can see two different ElementRefs: one with
div.ui.message and the other with i.alarm.icon. This means that the directive was
successfully bound to two different host elements:

Advanced Components 490

ElementRefs

Binding to the host

Moving on, our next goal is to do something when the host element is clicked.

We learned before that the way we bind events in elements in Angular is using the
(event) syntax.

In order to bind events of the host element, we’ll do something very similar, but the
syntax is different. In order to bind the directive to a host’s click event, we’re going
to use the decorator HostListener.

The HostListener decorator allows a directive to listen to events on its host
element.

We’ll do this by decorating a function on the component with the @HostListener()
decoration.

Advanced Components 491

We also want the host element to define what message will pop up when the element
is clicked, using the message attribute.

First, let’s add an inputs attribute to the directive. We’ll do this by importing Input

and using the @Input decorator with the property we will use for this input:

1 import { Component, Input } from '@angular/core';

2 ...

3 class Popup {

4 @Input() message: String;

5 ...

6 }

We’re saying that we’re having a property with the name message and expect to
receive an input with the same name.

Then, let’s add the HostListener decoration.We’ll do this by adding @HostLisener('click')
on the function we want to call when the host is clicked:

code/advanced-components/src/app/host/popup-demo/steps/host-3.ts
14 HostListener

15 } from '@angular/core';

16

17 @Directive({

18 selector: '[popup]'

19 })

20 export class PopupDirective {

21 @Input() message: String;

22

23 constructor(_elementRef: ElementRef) {

24 console.log(_elementRef);

25 }

26

27 @HostListener('click') displayMessage(): void {

28 alert(this.message);

29 }

30 }

Then when the host element is clicked we’ll call the directive’s displayMessage

method, which will display the message the host element defines.

And finally, we need to change our app template a bit to add the message we want
displayed for each element:

Advanced Components 492

code/advanced-components/src/app/host/popup-demo/steps/host-3.ts

32 @Component({

33 selector: 'app-popup-demo',

34 template: `

35 <div class="ui message" popup

36 message="Clicked the message">

37 <div class="header">

38 Learning Directives

39 </div>

40

41 <p>

42 This should use our Popup diretive

43 </p>

44 </div>

45

46 <i class="alarm icon" popup

47 message="Clicked the alarm icon"></i>

48 `

49 })

50 export class PopupDemoComponent3 {

51 }

Notice that we use the popup directive twice, and we pass a different message each
time we use it. This means when we run the app, we’re able to click either on the
message or on the alarm icon, and we’ll see different messages:

Advanced Components 493

Popup 1

Popup 2

Adding a Button using exportAs

Now let’s say we have a new requirement: we want to trigger the alert manually by
clicking a button. How could we trigger the popup message from outside the host

Advanced Components 494

element?

In order to achieve this, we need to make the directive available from elsewhere
in the template. As we discussed in previous chapters, the way to reference a
component is by using template reference variable. We can reference directives
the same way.

In order to give the templates a reference to a directive we use the exportAs attribute.
This will allow the host element (or a child of the host element) to define a template
variable that references the directive using the #var="exportName" syntax.

Let’s add the exportAs attribute to our directive:

code/advanced-components/src/app/host/popup-demo/steps/host-4.ts

17 @Directive({

18 selector: '[popup]',

19 exportAs: 'popup',

20 })

21 export class PopupDirective {

22 @Input() message: String;

23

24 constructor(_elementRef: ElementRef) {

25 console.log(_elementRef);

26 }

27

28 @HostListener('click') displayMessage(): void {

29 alert(this.message);

30 }

31 }

And now we need to change the two elements to export the template reference:

Advanced Components 495

code/advanced-components/src/app/host/popup-demo/steps/host-4.ts
35 template: `

36 <div class="ui message" popup #popup1="popup"

37 message="Clicked the message">

38 <div class="header">

39 Learning Directives

40 </div>

41

42 <p>

43 This should use our Popup diretive

44 </p>

45 </div>

46

47 <i class="alarm icon" popup #popup2="popup"

48 message="Clicked the alarm icon"></i>

See that we used the template var #popup1 for the div.message and #popup2 for the
icon.

Now let’s add two buttons, one to trigger each popup:

code/advanced-components/src/app/host/popup-demo/steps/host-4.ts
49 <div style="margin-top: 20px;">

50 <button (click)="popup1.displayMessage()" class="ui button">

51 Display popup for message element

52 </button>

53

54 <button (click)="popup2.displayMessage()" class="ui button">

55 Display popup for alarm icon

56 </button>

57 </div>

Now reload the page and click each of the buttons and each message will appear as
expected.

Creating a Message Pane with Content
Projection

Sometimes when we are creating components we want to pass inner markup as an
argument to the component. This technique is called content projection. The idea is

Advanced Components 496

that it lets us specify a bit of markup that will be expanded into a bigger template.

Angular 1 dug deep in the dictionary and called this transclusion.

Let’s create a new directive that will render a nicely styled message like this:

Popup 1

Our goal is to write markup like this:

1 <div message header="My Message">

2 This is the content of the message

3 </div>

Which will render into the more complicated HTML like:

1 <div class="ui message">

2 <div class="header">

3 My Message

4 </div>

5

6 <p>

7 This is the content of the message

8 </p>

9 </div>

We have two challenges here: we need to change the host element <div> to add the
ui and message CSS classes, and we need to add the div’s contents to a specific place
in our markup.

Advanced Components 497

Changing the Host’s CSS

To add attributes to the host element, we use a new decorator, similar to when
we listened to events on the host: the HostBinding decorator. But now, instead of
specifying the event name we want to listen for, we’ll define the attribute name we
want to ‘bind’ to. In this component, it looks like this:

1 @HostBinding('attr.class') cssClass = 'ui message';

This decoration tells angular that we want the value of cssClass to be kept in sync
with the host’s attribute class.

Using ng-content

Our next challenge is to include the original host element children in a specific part
of a view. To do that, we use the ng-content directive.

Since this directive needs a template, let’s use a component instead and write the
following code:

code/advanced-components/src/app/content-projection/content-projection-demo/mes-
sageo.component.ts

1 /* tslint:disable:component-selector */

2 import {

3 Component,

4 OnInit,

5 Input,

6 HostBinding

7 } from '@angular/core';

8

9 @Component({

10 selector: '[app-message]',

11 template: `

12 <div class="header">

13 {{ header }}

14 </div>

15 <p>

16 <ng-content></ng-content>

17 </p>

18 `

Advanced Components 498

19 })

20 export class MessageComponent implements OnInit {

21 @Input() header: string;

22 @HostBinding('attr.class') cssClass = 'ui message';

23

24 ngOnInit(): void {

25 console.log('header', this.header);

26 }

27 }

A few highlights:

• We use the @Input decorator to indicate we want to receive a header attribute,
set on the host element

• We set the host element’s class attribute to ui message using the host attribute
of our component

• We use <ng-content></ng-content> to project the host element’s children into
a specific location of our template

When we open the app in the browser and inspect the message div, we see it worked
exactly like we planned:

Advanced Components 499

projected content

Querying Neighbor Directives - Writing Tabs

It’s great when you can create a component that fully encapsulates its own behavior.

However, as a component grows in features, it might make sense to split it up into
several smaller components that work together.

A great example of components that work together is a tab pane that has multiple
tabs. The tab panel or tabset, as it’s usually called, is composed of multiple tabs. In
this scenario we have a parent component (the tabset) andmultiple child components

Advanced Components 500

(the tabs). The tabset and the tabs don’t make sense separately, but putting all of the
logic in one component is cumbersome. So in this example, we’re going to cover how
to make separate components that work together.

Let’s start writing those components in a way that we’ll be able to use the following
markup:

1 <tabset>

2 <tab title="Tab 1">Tab 1</tab>

3 <tab title="Tab 2">Tab 2</tab>

4 ...

5 </tabset>

We’re going to use Semantic UI Tab styles¹³¹ to render the tabs.

ContentTabComponent

Let’s start by writing the ContentTabComponent

code/advanced-components/src/app/tabs/content-tabs-demo/content-tab.component.ts
1 import {

2 Component,

3 OnInit,

4 Input

5 } from '@angular/core';

6

7 @Component({

8 selector: 'tab',

9 templateUrl: './content-tab.component.html'

10 })

11 export class ContentTabComponent implements OnInit {

12 @Input() title: string;

13 active = false;

14 name: string;

15

16 constructor() { }

17

18 ngOnInit() { }

19 }

and the template:
¹³¹http://semantic-ui.com/modules/tab.html#/examples

http://semantic-ui.com/modules/tab.html#/examples
http://semantic-ui.com/modules/tab.html#/examples

Advanced Components 501

code/advanced-components/src/app/tabs/content-tabs-demo/content-tab.component.html

1 <div class="ui bottom attached tab segment"

2 [class.active]="active">

3

4 <ng-content></ng-content>

5

6 </div>

There are not many new concepts here. We’re declaring a component that will use
the ContentTabComponent selector, and it will allow a title input to be set.

Then we’re rendering a <div> and using the content projection concept we learned
in the previous section to inline the contents of the <tab> directive inside the div.

Next we declare 3 properties on our components: title, active and name. One thing
to notice is the @Input('title') decorator we added to the title property. This
decorator is a way to ask Angular to automatically bind the value of the input title
into the property title.

ContentTabsetComponent Component

Now let’s move on to the ContentTabsetComponent component that will be used to
wrap the tabs:

code/advanced-components/src/app/tabs/content-tabs-demo/content-tabset.component.ts

1 import {

2 Component,

3 AfterContentInit,

4 QueryList,

5 ContentChildren

6 } from '@angular/core';

7

8 import { ContentTabComponent } from './content-tab.component';

9

10 @Component({

11 selector: 'tabset',

12 templateUrl: './content-tabset.component.html'

13 })

14 export class ContentTabsetComponent implements AfterContentInit {

15 @ContentChildren(ContentTabComponent) tabs: QueryList<ContentTabComponent>;

Advanced Components 502

16

17 ngAfterContentInit(): void {

18 this.tabs.toArray()[0].active = true;

19 }

20

21 setActive(tab: ContentTabComponent): void {

22 this.tabs.toArray().forEach((t) => t.active = false);

23 tab.active = true;

24 }

25

26 constructor() { }

27 }

and the template:

code/advanced-components/src/app/tabs/content-tabs-demo/content-tabset.component.html
1 <div class="ui top attached tabular menu">

2 <a *ngFor="let tab of tabs"

3 class="item"

4 [class.active]="tab.active"

5 (click)="setActive(tab)">

6

7 {{ tab.title }}

8

9

10 </div>

11 <ng-content></ng-content>

Let’s break down the implementation so we can learn about the new concepts it
introduces.

ContentTabsetComponent @Component Decorator

The @Component section doesn’t have many new ideas. We’re using the <tabset> tab
as our selector.

The template itself uses ngFor to iterate through the tabs and if the tab has the active
flag set to true, it will add the active CSS class to the <a> element that renders the
tab.

We also specify that we are rendering the tabs themselves after the initial div, right
where ng-content is.

Advanced Components 503

ContentTabsetComponent class

Now let’s turn our attention to the ContentTabsetComponent class. The first new
idea we see here is that the ContentTabsetComponent class is implementing Af-

terContentInit. This lifecycle hook will tell Angular to call a method of our class
(ngAfterContentInit) once the contents of the child directives have been initialized.

ContentTabsetComponent ContentChildren and QueryList

Next thing we do is declare the tabs property that will hold every ContentTab-

Component component we declare inside the ContentTabsetComponent. Notice that
instead of declaring this list as an array of ContentTabComponents, we use the class
QueryList, passing a generic of ContentTabComponent. Why is this?

QueryList is a class provided by Angular and when we use QueryList with a
ContentChildren Angular populates this with the components that match the
query and then keeps the items up to date if the state of the application changes.

However, QueryList requires a ContentChildren to populate it, so let’s take a look
at that now.

On the tabs instance variable, we add the @ContentChildren(Tab) decorator. This
decorator will tell Angular to inject all the direct child directives (of the ContentTab-
Component type) into the tabs parameter.We then assign it to the tabs property of our
component. With this we now have access to all the child ContentTabComponent

components.

Initializing the ContentTabsetComponent

When this component is initialized, we want to make the first tab active. To do this
we use the ngAfterContentInit function (that is described by the AfterContentInit
hook). Notice that we use this.tabs.toArray() to cast Angular’s QueryList into a
native TypeScript array.

ContentTabsetComponent setActive

Finally we define a setActive method. This method is used when we click a tab
on our template e.g. using (click)="setActive(tab)". This function will iterate
through all the tabs, setting their active properties to false. Then we set the tab
we clicked to active.

Advanced Components 504

Using the ContentTabsetComponent

Now the next step is to code the application component that makes use of both of
the components we created. Here’s how we write the component:

code/advanced-components/src/app/tabs/content-tabs-demo/content-tabs-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-content-tabs-demo',

5 templateUrl: './content-tabs-demo.component.html'

6 })

7 export class ContentTabsDemoComponent implements OnInit {

8 tabs: any;

9

10 constructor() { }

11

12 ngOnInit() {

13 this.tabs = [

14 { title: 'About', content: 'This is the About tab' },

15 { title: 'Blog', content: 'This is our blog' },

16 { title: 'Contact us', content: 'Contact us here' },

17];

18 }

19

20 }

and template:

code/advanced-components/src/app/tabs/content-tabs-demo/content-tabs-demo.component.html

1 <tabset>

2 <tab title="First tab">

3 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

4 Quibusdam magni quia ut harum facilis, ullam deleniti porro

5 dignissimos quasi at molestiae sapiente natus, neque voluptatum

6 ad consequuntur cupiditate nemo sunt.

7 </tab>

8

9 <tab

10 *ngFor="let tab of tabs"

11 [title]="tab.title">

12 {{ tab.content }}

Advanced Components 505

13 </tab>

14 </tabset>

We’re declaring that we’re using tabs-sample-app as our component’s selector and
using the ContentTabsetComponent and ContentTabComponent components.

On the template we then create a ContentTabsetComponent and we add first a static
tab (First tab) and we add a few more tabs from the tabs property of the component
controller class, to illustrate how we can render tabs dynamically.

Tabset application

Lifecycle Hooks

Lifecycle hooks are the way Angular allows you to add code that runs before or after
each step of the directive or component lifecycle.

The list of hooks Angular offers are:

• OnInit

Advanced Components 506

• OnDestroy

• DoCheck

• OnChanges

• AfterContentInit

• AfterContentChecked

• AfterViewInit

• AfterViewChecked

Using these hooks each follow a similar pattern:

In order to be notified about those events you

1. declare that your directive or component class implements the interface and
then

2. declare the ng method of the hook (e.g. ngOnInit)

Every method name is ng plus the name of the hook. For example, for OnInit we
declare the method ngOnInit, for AfterContentInitwe declare ngAfterContentInit
and so on.

When Angular knows that a component implements these functions, it will invoke
them at the appropriate time.

Let’s take a look at each hook individually and when we would use each of them.

It is actually not mandatory for the class to implement the interface,
one could just create the method of the hook. But it is considered good
practice¹³² and has benefits from strong typing and editor tooling.

OnInit and OnDestroy

The OnInit hook is called when your directive properties have been initialized, and
before any of the child directive properties are initialized.

¹³²https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

Advanced Components 507

Similarly, the OnDestroy hook is called when the directive instance is destroyed. This
is typically used if we need to do some cleanup every time our directive is destroyed.

In order to illustrate let’s write a component that implements both OnInit and
OnDestroy:

code/advanced-components/src/app/lifecycle/on-init/on-init.component.ts
1 import {

2 Component,

3 OnInit,

4 OnDestroy

5 } from '@angular/core';

6

7 @Component({

8 selector: 'app-on-init',

9 template: `

10 <div class="ui label">

11 <i class="cubes icon"></i> Init/Destroy

12 </div>

13 `

14 })

15 export class OnInitComponent implements OnInit, OnDestroy {

16 constructor() { }

17

18 ngOnInit(): void {

19 console.log('On init');

20 }

21

22 ngOnDestroy(): void {

23 console.log('On destroy');

24 }

25 }

For this component, we’re just logging On init and On destroy to the console when
the hooks are called.

Now in order to test those hooks let’s use our component in our app component using
ngFor to conditionally display it based on a boolean property. Let’s also add a button
that allows us to toggle that flag. This way, when the flag is false, our component
will be removed from the page, causing the OnDestroy hook to be called. Similarly
when the flag is toggled to true, the OnInit hook will be called.

Here’s how our app component will look:

Advanced Components 508

code/advanced-components/src/app/lifecycle/on-init/on-init-demo.component.ts

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-on-init-demo',

5 templateUrl: './on-init-demo.component.html'

6 })

7 export class OnInitDemoComponent {

8 display: boolean;

9

10 constructor() {

11 this.display = true;

12 }

13

14 toggle(): void {

15 this.display = !this.display;

16 }

17 }

and the template:

code/advanced-components/src/app/lifecycle/on-init/on-init-demo.component.html

1 <h4 class="ui horizontal divider header">

2 OnInit and OnDestroy

3 </h4>

4

5 <button class="ui primary button" (click)="toggle()">

6 Toggle

7 </button>

8 <app-on-init *ngIf="display"></app-on-init>

When we first run the application, we can see that the OnInit hook was called when
the component was first instantiated:

Advanced Components 509

Initial state of our component

When I click the Toggle button for the first time, the component is destroyed and the
hook is called as expected:

Advanced Components 510

OnDestroy hook

And if we click it another time:

Advanced Components 511

OnDestroy hook

OnChanges

The OnChanges hook is called after one or more of our component properties have
been changed. The ngOnChanges method receives a parameter which tells which
properties have changed.

To understand this better, let’s write a comment block component that has two inputs:
name and comment :

Advanced Components 512

code/advanced-components/src/app/lifecycle/on-changes/on-changes.component.ts

1 import {

2 Component,

3 OnInit,

4 OnChanges,

5 Input,

6 SimpleChange

7 } from '@angular/core';

8

9 @Component({

10 selector: 'app-on-changes',

11 templateUrl: './on-changes.component.html'

12 })

13 export class OnChangesComponent implements OnChanges {

14 @Input('name') name: string;

15 @Input('comment') comment: string;

16

17 ngOnChanges(changes: {[propName: string]: SimpleChange}): void {

18 console.log('Changes', changes);

19 }

20 }

and template:

code/advanced-components/src/app/lifecycle/on-changes/on-changes.component.html

1 <div class="ui comments">

2 <div class="comment">

3

4

5

6 <div class="content">

7 {{name}}

8 <div class="text">

9 {{comment}}

10 </div>

11 </div>

12 </div>

13 </div>

The important thing about this component is that it implements the OnChanges

interface, and it declares the ngOnChanges method with this signature:

Advanced Components 513

code/advanced-components/src/app/lifecycle/on-changes/on-changes.component.ts

17 ngOnChanges(changes: {[propName: string]: SimpleChange}): void {

18 console.log('Changes', changes);

19 }

This method will be triggered whenever the values of either the name or comment
properties change.When that happens, we receive an object that maps changed fields
to SimpleChange objects.

Each SimpleChange instance has two fields: currentValue and previousValue. If both
name and comment properties change for our component, we expect the value of
changes in our method to be something like:

1 {

2 name: {

3 currentValue: 'new name value',

4 previousValue: 'old name value'

5 },

6 comment: {

7 currentValue: 'new comment value',

8 previousValue: 'old comment value'

9 }

10 }

Now, let’s change the app component to use our component and also add a little form
where we can play with the name and comment properties of our component:

code/advanced-components/src/app/lifecycle/on-changes/on-changes-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-on-changes-demo',

5 templateUrl: './on-changes-demo.component.html',

6 styles: []

7 })

8 export class OnChangesDemoComponent implements OnInit {

9 display: boolean;

10 name: string;

11 comment: string;

12

Advanced Components 514

13 constructor() { }

14

15 ngOnInit() {

16 this.display = true;

17 this.name = 'Felipe Coury';

18 this.comment = 'I am learning so much!';

19 }

20

21 setValues(namefld, commentfld): void {

22 this.name = namefld.value;

23 this.comment = commentfld.value;

24 }

25

26 toggle(): void {

27 this.display = !this.display;

28 }

29

30 }

and template:

code/advanced-components/src/app/lifecycle/on-changes/on-changes-demo.component.html

1 <h4 class="ui horizontal divider header">

2 OnChanges

3 </h4>

4

5 <div class="ui form">

6 <div class="field">

7 <label>Name</label>

8 <input

9 type="text"

10 #namefld

11 value="{{name}}"

12 (keyup)="setValues(namefld, commentfld)">

13 </div>

14

15 <div class="field">

16 <label>Comment</label>

17 <textarea

18 #commentfld

19 (keyup)="setValues(namefld, commentfld)"

20 rows="2">{{comment}}</textarea>

21 </div>

Advanced Components 515

22 </div>

23

24 <app-on-changes

25 [name]="name"

26 [comment]="comment"

27 ></app-on-changes>

Note the important pieces we added to the template. We declare a new form with
name and comment fields.

When the keyup event is fired for either the name or comment fields, we are calling
setValues with the template references namefld and commentfld that represent the
input and textarea.

This method just takes the value from those fields and updates the name and
comment properties accordingly:

code/advanced-components/src/app/lifecycle/on-changes/on-changes-demo.component.ts

21 setValues(namefld, commentfld): void {

22 this.name = namefld.value;

23 this.comment = commentfld.value;

24 }

So now, the first time we open the app, we can see that our OnChanges hook is called:

Advanced Components 516

OnChanges

This happens when the initial values are set, on the constructor of the Lifecycle-

SampleApp component.

Now if we play with the name, we can see that the hook is called repeatedly. In the
case below, we pasted the name Nate Murray on top of the previous name, and the
values for the changes are displayed as expected:

Advanced Components 517

OnChanges

DoCheck

The default notification system implemented by OnChanges is triggered every time
the Angular change detection mechanism notices there was a change on any of the
directive properties.

However, there may be times when the overhead added by this change notification
may be too much, especially if performance is a concern.

There may be times when we just want to do something in case an itemwas removed
or added, or if only a particular property changed, for instance.

If we run into one of these scenarios, we can use the DoCheck hook.

Advanced Components 518

It’s important to note that the OnChanges hook gets overridden by DoCheck

so if we implement both, OnChanges will be ignored.

Checking for changes

In order to evaluate what changed, Angular provides differs. Differs will evaluate
a given property of your directive to determine what changed.

There are two types of built-in differs: iterable differs and key-value differs.

Iterable differs

Iterable differs should be used when we have a list-like structure and we’re only
interested in knowing things that were added or removed from that list.

Key-value differs

Key-value differs should be used for dictionary-like structures, and work at the key
level. This differ will identify changes when a new key is added, when a key removed
and when the value of a key changed.

Rendering a comment with DoCheck

To illustrate these concepts, let’s build a component that renders a stream of
comments, like below:

Advanced Components 519

DoCheck example

Let’s write a component that will render one individual comment. First, the template:

code/advanced-components/src/app/lifecycle/differs/comment.component.html

1 <div class="ui feed">

2 <div class="event">

3 <div class="label" *ngIf="comment.author">

4

5 </div>

6 <div class="content">

7 <div class="summary">

8

9 {{comment.author}}

10 posted a comment

11 <div class="date">

12 1 Hour Ago

13 </div>

14 </div>

15 <div class="extra text">

16 {{comment.comment}}

17 </div>

18 <div class="meta">

19

20 <i class="trash icon"></i> Remove

21

22

Advanced Components 520

23 <i class="eraser icon"></i> Clear

24

25

26 <i class="like icon"></i> {{comment.likes}} Likes

27

28 </div>

29 </div>

30 </div>

31 </div>

and in the component:

code/advanced-components/src/app/lifecycle/differs/comment.component.ts

1 import {

2 Component,

3 Input,

4 Output,

5 EventEmitter,

6 KeyValueDiffers,

7 DoCheck

8 } from '@angular/core';

9

10 @Component({

11 selector: 'app-comment',

12 templateUrl: './comment.component.html'

13 })

14 export class CommentComponent implements DoCheck {

15 @Input() comment: any;

16 @Output() onRemove: EventEmitter<any>;

17 differ: any;

Here we are declaring the component metadata. Our component will receive the
comment that should be rendered and it will emit an event with the remove button
icon clicked.

On the class declaration we indicate we’re implementing the DoCheck interface. We
then declare the input property comment, and the output event onRemove. We also
declare a differ property.

Advanced Components 521

code/advanced-components/src/app/lifecycle/differs/comment.component.ts

19 constructor(differs: KeyValueDiffers) {

20 this.differ = differs.find([]).create();

21 this.onRemove = new EventEmitter();

22 }

On the constructor we’re receiving a KeyValueDiffers instance on the differs

variable. We then use this variable to create an instance of the key value differ
using this syntax differs.find([]).create(null). We’re also initializing our event
emitter onRemove.

Next, let’s implement the ngDoCheck method, required by the interface:

code/advanced-components/src/app/lifecycle/differs/comment.component.ts

24 ngDoCheck(): void {

25 const changes = this.differ.diff(this.comment);

26

27 if (changes) {

28 changes.forEachAddedItem(r =>

29 this.logChange('added', r)

30);

31 changes.forEachRemovedItem(r =>

32 this.logChange('removed', r)

33);

34 changes.forEachChangedItem(r =>

35 this.logChange('changed', r)

36);

37 }

38 }

This is how you check for changes, if you’re using a key-value differ. You call the
diff method, providing the property you want to check. In our case, we want to
know if there were changes to the comment property.

When no changes are detected, the returned value will be null. Now, if there are
changes, we can call three different iterable methods on the differ:

• forEachAddedItem, for keys that were added
• forEachRemovedItem, for keys that were removed

Advanced Components 522

• forEachChangedItem, for keys that were changed

Each method will call the provided callback with a record. For the key-value differ,
this record will be an instance of the KVChangeRecord class.

Example of a KVChangeRecord instance

The important fields for understanding what changed are key, previousValue and
currentValue.

Next, let’s write a method that will log to the console a nice sentence about what
changed:

code/advanced-components/src/app/lifecycle/differs/comment.component.ts

40 logChange(action, r) {

41 if (action === 'changed') {

42 console.log(

43 r.key,

44 action,

45 'from',

46 r.previousValue,

47 'to',

48 r.currentValue

49);

50 }

51 if (action === 'added') {

52 console.log(action, r.key, 'with', r.currentValue);

53 }

54 if (action === 'removed') {

55 console.log(

56 action,

57 r.key,

58 '(was ' + r.previousValue + ')'

59);

60 }

61 }

Advanced Components 523

Finally, let’s write the methods that will help us change things on our component, to
trigger our DoCheck hook:

code/advanced-components/src/app/lifecycle/differs/comment.component.ts

63 remove(): void {

64 this.onRemove.emit(this.comment);

65 }

66

67 clear(): void {

68 delete this.comment.comment;

69 }

70

71 like(): void {

72 this.comment.likes += 1;

73 }

The remove() method will emit the event indicating that the user asked for this
comment to be removed, the clear() method will remove the comment text from
the comment object, and the like() method will increase the like counter for the
comment.

Rendering a list of comments with CommentsListComponent

Now that we have written a component for one individual comment, let’s write a
second component that will be responsible for rendering the list of comments. First
the template:

code/advanced-components/src/app/lifecycle/differs/comments-list.component.html

1 <app-comment

2 *ngFor="let comment of comments"

3 [comment]="comment"

4 (onRemove)="removeComment($event)">

5 </app-comment>

6

7 <button

8 class="ui primary button"

9 (click)="addComment()">

10 Add

11 </button>

Advanced Components 524

The component template is straightforward: we’re using the component we created
above, and then using ngFor to iterate through a list of comments, rendering them.
We also have a button that will allow the user to add more comments to the list.

Now let’s implement our comment list class CommentsListComponent:

code/advanced-components/src/app/lifecycle/differs/comments-list.component.ts
1 /* tslint:disable:max-line-length,quotemark */

2 import {

3 Component,

4 IterableDiffers,

5 DoCheck

6 } from '@angular/core';

7

8 @Component({

9 selector: 'app-comments-list',

10 templateUrl: './comments-list.component.html'

11 })

12 export class CommentsListComponent implements DoCheck {

13 comments: any[];

14 iterable: boolean;

15 authors: string[];

16 texts: string[];

17 differ: any;

Here we declare the variables we’ll use: comments, iterable, authors, and texts.

code/advanced-components/src/app/lifecycle/differs/comments-list.component.ts
19 constructor(differs: IterableDiffers) {

20 this.differ = differs.find([]).create(null);

21 this.comments = [];

22

23 this.authors = ['Elliot', 'Helen', 'Jenny', 'Joe', 'Justen', 'Matt'];

24 this.texts = [

25 "Ours is a life of constant reruns. We're always circling back to where we'd we sta\

26 rted, then starting all over again. Even if we don't run extra laps that day, we surely w\

27 ill come back for more of the same another day soon.",

28 'Really cool!',

29 'Thanks!'

30];

31

32 this.addComment();

33 }

Advanced Components 525

For this component, we’ll be using an iterable differ. We can see that the class we’re
using to create the differ is now IterableDiffers. However, the way we create a
differ remains the same.

On the constructor we also initialize a list of authors and a list of comment texts to
be used when adding new comments.

Finally, we call the addComment()method sowe don’t initialize the appwith an empty
list of comments.

The next three methods are used to add a new comment:

code/advanced-components/src/app/lifecycle/differs/comments-list.component.ts

33 getRandomInt(max: number): number {

34 return Math.floor(Math.random() * (max + 1));

35 }

36

37 getRandomItem(array: string[]): string {

38 const pos: number = this.getRandomInt(array.length - 1);

39 return array[pos];

40 }

41

42 addComment(): void {

43 this.comments.push({

44 author: this.getRandomItem(this.authors),

45 comment: this.getRandomItem(this.texts),

46 likes: this.getRandomInt(20)

47 });

48 }

49

50 removeComment(comment) {

51 const pos = this.comments.indexOf(comment);

52 this.comments.splice(pos, 1);

53 }

We are declaring two methods that will return a random integer and a random item
from an array, respectively.

Finally, the addComment()methodwill push a new comment to the list, with a random
author, random text and a random number of likes.

Next, we have the removeComment() method, that will be used to remove one
comment from the list:

Advanced Components 526

code/advanced-components/src/app/lifecycle/differs/comments-list.component.ts

50 removeComment(comment) {

51 const pos = this.comments.indexOf(comment);

52 this.comments.splice(pos, 1);

53 }

And finally we declare our change detection method ngDoCheck():

code/advanced-components/src/app/lifecycle/differs/comments-list.component.ts

55 ngDoCheck(): void {

56 const changes = this.differ.diff(this.comments);

57

58 if (changes) {

59 changes.forEachAddedItem(r => console.log('Added', r.item));

60 changes.forEachRemovedItem(r => console.log('Removed', r.item));

61 }

62 }

The iterable differ behaves the same way as the key-value differ but it only provides
methods for items that were added or removed.

When we run the app now, we get the list of comments with one comment:

Advanced Components 527

Initial state

We can also see that a few things were logged to the console, like:

1 added author with Matt

2 ...

3 added likes with 14

Let’s see what happens when we add a new comment to the list by clicking the Add
button:

Advanced Components 528

Comment added

We can see that the iterable differs identified that we added a new object to the list
{author: "Hellen", comment: "Thanks!", likes: 17}.

We also got individual changes to the comment object logged, as detected by the
key-value differ:

1 added author with Helen

2 added comment with Thanks!

3 added likes with 17

Now we can click the like button for this new comment:

Advanced Components 529

Number of likes changed

And now only the like change was detected.

If we click the Clear icon, it will remove the comment key from the comment object:

Advanced Components 530

Comment text cleared

And the log confirms that we removed that key.

Finally, let’s remove the last comment, by clicking the Remove icon:

Advanced Components 531

Comment removed

And as expected, we get a removed object log.

AfterContentInit, AfterViewInit, AfterContentChecked
and AfterViewChecked

The AfterContentInit hook is called after OnInit, right after the initialization of the
content of the component or directive has finished.

The AfterContentChecked works similarly, but it’s called after the directive check
has finished. The check, in this context, is the change detection system check.

The other two hooks: AfterViewInit and AfterViewChecked are triggered right after
the content ones above, right after the view has been fully initialized. Those two
hooks are only applicable to components, and not to directives.

Also, the AfterXXXInit hooks are only called once during the directive lifecycle,
while the AfterXXXChecked hooks are called after every change detection cycle.

Advanced Components 532

To better understand this, let’s write another component that logs to the console
during each lifecycle hook. It will also have a counter that we can increment by
clicking a button:

code/advanced-components/src/app/lifecycle/all-hooks/all-hooks.component.ts

1 import {

2 Component,

3 OnInit,

4 OnDestroy,

5 DoCheck,

6 OnChanges,

7 AfterContentInit,

8 AfterContentChecked,

9 AfterViewInit,

10 AfterViewChecked

11 } from '@angular/core';

12

13 @Component({

14 selector: 'app-all-hooks',

15 templateUrl: './all-hooks.component.html'

16 })

17 export class AllHooksComponent implements OnInit,

18 OnDestroy, DoCheck,

19 OnChanges, AfterContentInit,

20 AfterContentChecked, AfterViewInit,

21 AfterViewChecked {

22 counter: number;

23

24 constructor() {

25 console.log('AllHooksComponent --------- [constructor]');

26 this.counter = 1;

27 }

28 inc() {

29 console.log('AllHooksComponent --------- [counter]');

30 this.counter += 1;

31 }

32 ngOnInit() {

33 console.log('AllHooksComponent - OnInit');

34 }

35 ngOnDestroy() {

36 console.log('AllHooksComponent - OnDestroy');

37 }

38 ngDoCheck() {

39 console.log('AllHooksComponent - DoCheck');

Advanced Components 533

40 }

41 ngOnChanges() {

42 console.log('AllHooksComponent - OnChanges');

43 }

44 ngAfterContentInit() {

45 console.log('AllHooksComponent - AfterContentInit');

46 }

47 ngAfterContentChecked() {

48 console.log('AllHooksComponent - AfterContentChecked');

49 }

50 ngAfterViewInit() {

51 console.log('AllHooksComponent - AfterViewInit');

52 }

53 ngAfterViewChecked() {

54 console.log('AllHooksComponent - AfterViewChecked');

55 }

56

57 }

Now let’s add it to the app component, along with a Toggle button, like the one we
used for the OnDestroy hook:

code/advanced-components/src/app/lifecycle/all-hooks/all-hooks-demo.component.html

1 <h4 class="ui horizontal divider header">

2 AfterContentInit, AfterViewInit, AfterContentChecked and AfterViewChecked

3 </h4>

4

5 <app-all-hooks

6 *ngIf="displayAfters"

7 ></app-all-hooks>

8

9 <button class="ui primary button" (click)="toggleAfters()">

10 Toggle

11 </button>

The final implementation for the app demo component now will look like this:

Advanced Components 534

code/advanced-components/src/app/lifecycle/all-hooks/all-hooks-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-all-hooks-demo',

5 templateUrl: './all-hooks-demo.component.html',

6 styles: []

7 })

8 export class AllHooksDemoComponent implements OnInit {

9 displayAfters = true;

10

11 constructor() { }

12

13 ngOnInit() { }

14

15 toggleAfters(): void {

16 this.displayAfters = !this.displayAfters;

17 }

18 }

When the application starts, we can see each hook is logged:

Advanced Components 535

App started

Now let’s clear the console and click the Increment button:

Advanced Components 536

After counter increment

You can see that now only the DoCheck, AfterContentCheck and AfterViewCheck

hooks were triggered.

Sure enough, if we click the Toggle button:

Advanced Components 537

App started

And click it again:

Advanced Components 538

App started

All the hooks are triggered.

Advanced Templates

Template elements are special elements used to create views that can be dynamically
manipulated.

In order to make working with templates simpler, Angular provides some syntactic
sugar to create templates, so we often don’t create them by hand.

For instance, when we write:

Advanced Components 539

1 <app-comment

2 *ngFor="let comment of comments"

3 [comment]="comment"

4 (onRemove)="removeComment($event)">

5 </app-comment>

This gets converted into:

1 <app-comment

2 template="ngFor let comment of comments; #i=index"

3 [comment]="comment"

4 (onRemove)="removeComment($event)">

5 </app-comment>

Which then gets converted into:

1 <template

2 ngFor

3 [ngForOf]="comments"

4 let-comment="$implicit"

5 let-index="i">

6 <app-comment

7 [comment]="comment"

8 (onRemove)="removeComment($event)">

9 </app-comment>

10 </template>

It’s important that we understand this underlying concept so we can build our own
directives.

Rewriting ngIf - ngBookIf

Let’s create a directive that does exactly what ngIf does. Let’s call it ngBookIf.

ngBookIf @Directive

We start by declaring the @Directive decorator for our class:

Advanced Components 540

1 @Directive({

2 selector: '[ngBookIf]'

3 })

We’re using [ngBookIf] as the selector because, as we learned above, when we use
*ngBookIf="condition", it will be converted to:

1 <template ngBookIf [ngBookIf]="condition">

Since ngBookIf is also an attribute we need to indicate that we’re expecting to receive
it as an input.

The job of this directive should be to add the directive template contents when the
condition is true and remove it when it’s false.

So when the condition is true, we will use a view container. The view container is
used to attach one or more views to the directive.

We will use the view container to either:

• create a new view with our directive template embedded or
• clear the view container contents.

Before we do that, we need to inject the ViewContainerRef and the TemplateRef.
They will be injected with the directive’s view container and template.

Here’s the code we’ll need:

code/advanced-components/src/app/templates/ng-book-if/ng-book-if.directive.ts

11 export class NgBookIfDirective {

12 constructor(private viewContainer: ViewContainerRef,

13 private template: TemplateRef<any>) {}

Now that we have references to both the view container and the template, we will
use a TypeScript property setter construct and also specify that this is an input using
the Input() decorator:

Advanced Components 541

code/advanced-components/src/app/templates/ng-book-if/ng-book-if.directive.ts
15 @Input() set ngBookIf(condition) {

16 if (condition) {

17 this.viewContainer.createEmbeddedView(this.template);

18 } else {

19 this.viewContainer.clear();

20 }

21 }

22 }

This method will be called every time we set a value on the ngBookIf property
of our class. That is, this method will be called anytime the condition in ng-

BookIf="condition" changes.

Now we use the view container’s createEmbeddedView method to attach the direc-
tive’s template if the condition is true, or the clear method to remove everything
from the view container.

Using ngBookIf

In order to use our directive, we can write the following demo component:

code/advanced-components/src/app/templates/ng-book-if/ng-book-if-demo.component.ts
1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-ng-book-if',

5 templateUrl: './ng-book-if-demo.component.html',

6 })

7 export class NgBookIfDemoComponent {

8 display: boolean;

9

10 constructor() {

11 this.display = true;

12 }

13

14 toggle() {

15 this.display = !this.display;

16 }

17 }

and template:

Advanced Components 542

code/advanced-components/src/app/templates/ng-book-if/ng-book-if-demo.component.html

1 <button class="ui primary button" (click)="toggle()">

2 Toggle

3 </button>

4

5 <div *ngBookIf="display">

6 The message is displayed

7 </div>

When we run the application, we can see that the directive works as expected: when
we click the Toggle button the message This message is displayed is toggled on and
off the page.

Rewriting ngFor - NgBookFor

Now let’s write a simplified version of the ngFor directive that Angular provides to
handle repetition of templates for a given collection.

NgBookFor template deconstruction

This directive will be used with the *NgBookFor="let var of collection" notation.

Like we did for the previous directive, we need to declare the selector as being
[NgBookFor]. However the input parameter, in this case, won’t be NgBookFor only.

If we look back at how Angular converts the *something="let var in collection"

notation, we can see that the final form of the element is the equivalent of:

1 <template something [somethingOf]="collection" let-var="$implicit">

2 <!-- ... -->

3 </template>

As we can see, the attribute that’s being passed isn’t something but somethingOf
instead. That’s where our directive receives the collection we’re iterating on.

In the template that is generated, we’re going to have a local view variable #var, that
will receive the value from the $implicit local variable. That’s the name of the local
variable that Angular uses when “de-sugaring” the syntax into a template.

Advanced Components 543

NgBookFor @Directive

Time to write the directive.

code/advanced-components/src/app/templates/ng-book-for/ng-book-for.directive.ts

1 import {

2 Directive,

3 IterableDiffer,

4 IterableDiffers,

5 ViewRef,

6 ViewContainerRef,

7 TemplateRef,

8 ChangeDetectorRef,

9 DoCheck,

10 Input

11 } from '@angular/core';

12

13 @Directive({

14 selector: '[ngBookFor]'

15 })

16 export class NgBookForDirective implements DoCheck {

17 private items: any;

18 private differ: IterableDiffer<any>;

19 private views: Map<any, ViewRef> = new Map<

20 any,

21 ViewRef

22 >();

23

24 constructor(

25 private viewContainer: ViewContainerRef,

26 private template: TemplateRef<any>,

27 private differs: IterableDiffers

28) {}

We are declaring some properties for our class:

• items holds the collection we’re iterating on
• differ is an IterableDiffer (which we learned about in the Lifecycle Hooks
section above) that will be used for change detection purposes

• views is a Map that will link a given item on the collection with the view that
contains it

Advanced Components 544

The constructor will receive the viewContainer, the template and an IterableDif-

fers instance (we discussed each of these things earlier in this chapter above).

Now, the next thing that’s being injected is a change detector. We will have a deep
dive in change detection in the next section. For now, let’s say that this is the class
that Angular creates to trigger the detection when properties of our directive change.

The next step is to write code that will trigger when we set the ngBookForOf input:

code/advanced-components/src/app/templates/ng-book-for/ng-book-for.directive.ts

31 set ngBookForOf(items) {

32 this.items = items;

33 if (this.items && !this.differ) {

34 this.differ = this.differs.find(items).create();

35 }

36 }

When we set this attribute, we’re keeping the collection on the directive’s items

property and if the collection is valid and we don’t have a differ yet, we create one.

To do that, we’re creating an instance of IterableDiffer that reuses the directive’s
change detector (the one we injected in the constructor).

Now it’s time to write the code that will react to a change on the collection. For
this, we’re going to use the DoCheck lifecycle hook by implementing the ngDoCheck
method as follows:

code/advanced-components/src/app/templates/ng-book-for/ng-book-for.directive.ts

38 ngDoCheck(): void {

39 if (this.differ) {

40 const changes = this.differ.diff(this.items);

41 if (changes) {

42 changes.forEachAddedItem(change => {

43 const view = this.viewContainer.createEmbeddedView(

44 this.template,

45 { $implicit: change.item }

46);

47 this.views.set(change.item, view);

48 });

49 changes.forEachRemovedItem(change => {

50 const view = this.views.get(change.item);

51 const idx = this.viewContainer.indexOf(view);

Advanced Components 545

52 this.viewContainer.remove(idx);

53 this.views.delete(change.item);

54 });

55 }

56 }

57 }

Let’s break this down a bit. First thing we do in this method is make sure we already
instantiated the differ. If not, we do nothing.

Next, we ask the differ what changed. If there are changes, we first iterate through the
items that were added using changes.forEachAddedItem. This method will receive a
CollectionChangeRecord object for every element that was added.

Then for each element, we create a new embedded view using the view container’s
createEmbeddedView method.

1 let view = this.viewContainer.createEmbeddedView(this.template, {'$implicit': change.item\

2 });

The second argument to createEmbeddedView is the view context. In this case, we’re
setting the $implicit local variable to change.item. This will allow us to reference
the variable we declared back on the *NgBookFor="let var of collection" as var
on that view. That is, the var in let var is the $implicit variable. We use $implicit
because we don’t know what name the user will assign to it when we’re writing this
component.

The final thing we need to do is to connect the item with the collection to its view.
The reason behind this is that, if an item gets removed from the collection, we need
to get rid of the correct view, as we do next.

Now for each item that was removed from the collection, we use the item-to-view
map we keep to find the view. Then we ask the view container for the index of that
view. We need that because the view container’s remove method needs an index.
Finally, we also remove the view from the item-to-view map.

Trying out our directive

To test our new directive, let’s write the following component:

Advanced Components 546

code/advanced-components/src/app/templates/ng-book-for/ng-book-for-demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2

3 @Component({

4 selector: 'app-ng-book-for-demo',

5 templateUrl: './ng-book-for-demo.component.html'

6 })

7 export class NgBookForDemoComponent implements OnInit {

8 people: any[];

9

10 constructor() { }

11

12 ngOnInit() {

13 this.people = [

14 {name: 'Joe', age: 10},

15 {name: 'Patrick', age: 21},

16 {name: 'Melissa', age: 12},

17 {name: 'Kate', age: 19}

18];

19 }

20

21 remove(p) {

22 const idx: number = this.people.indexOf(p);

23 this.people.splice(idx, 1);

24 return false;

25 }

26

27 add(name, age) {

28 this.people.push({name: name.value, age: age.value});

29 name.value = '';

30 age.value = '';

31 }

32 }

and template:

Advanced Components 547

code/advanced-components/src/app/templates/ng-book-for/ng-book-for-demo.component.html

1

2 <li *ngBookFor="let p of people">

3 {{ p.name }} is {{ p.age }}

4 <a href (click)="remove(p)">Remove

5

6

7

8 <div class="ui form">

9 <div class="fields">

10 <div class="field">

11 <label>Name</label>

12 <input type="text" #name placeholder="Name">

13 </div>

14 <div class="field">

15 <label>Age</label>

16 <input type="text" #age placeholder="Age">

17 </div>

18 </div>

19 </div>

20 <div class="ui submit button"

21 (click)="add(name, age)">

22 Add

23 </div>

We’re using our directive to iterate through a list of people:

code/advanced-components/src/app/templates/ng-book-for/ng-book-for-demo.component.html

1

2 <li *ngBookFor="let p of people">

3 {{ p.name }} is {{ p.age }}

4 <a href (click)="remove(p)">Remove

5

6

When we click Remove we remove the item from the collection, triggering the
change detection.

We also provide a form that allows adding items to the collection:

Advanced Components 548

code/advanced-components/src/app/templates/ng-book-for/ng-book-for-demo.component.html

8 <div class="ui form">

9 <div class="fields">

10 <div class="field">

11 <label>Name</label>

12 <input type="text" #name placeholder="Name">

13 </div>

14 <div class="field">

15 <label>Age</label>

16 <input type="text" #age placeholder="Age">

17 </div>

18 </div>

19 </div>

20 <div class="ui submit button"

21 (click)="add(name, age)">

22 Add

23 </div>

Change Detection

As a user interacts with our app, data (state) changes and our app needs to respond
accordingly.

One of the big problems any modern JavaScript framework needs to solve is how to
figure out when changes have happened and re-render components accordingly.

In order to make the view react to changes to components state, Angular uses change
detection.

What are the things that can trigger changes in a component’s state? The most
obvious thing is user interaction. For instance, if we have a component:

Advanced Components 549

1 @Component({

2 selector: 'my-component',

3 template: `

4 Name: {{name}}

5 <button (click)="changeName()">Change!</button>

6 `

7 })

8 class MyComponent {

9 name: string;

10 constructor() {

11 this.name = 'Felipe';

12 }

13

14 changeName() {

15 this.name = 'Nate';

16 }

17 }

We can see that when the user clicks on the Change! button, the component’s name
property will change.

Another source of change could be, for instance, a HTTP request:

1 @Component({

2 selector: 'my-component',

3 template: `

4 Name: {{name}}

5 `

6 })

7 class MyComponent {

8 name: string;

9 constructor(private http: HttpClient) {

10 this.http.get('/names/1')

11 .map(res => res.json())

12 .subscribe(data => this.name = data.name);

13 }

14 }

And finally, we could have a timer that would trigger the change:

Advanced Components 550

1 @Component({

2 selector: 'my-component',

3 template: `

4 Name: {{name}}

5 `

6 })

7 class MyComponent {

8 name: string;

9 constructor() {

10 setTimeout(() => this.name = 'Felipe', 2000);

11 }

12 }

But how does Angular become aware of these changes?

The first thing to know is that each component gets a change detector.

Like we’ve seen before, a typical application will have a number of components that
will interact with each other, creating a dependency tree like below:

Advanced Components 551

Component tree

For each component on our tree, a change detector is created and so we end up with
a tree of change detectors:

Advanced Components 552

Change detector tree

When one of the components change, no matter where it is in the tree, a change
detection pass is triggered for the whole tree. This happens because Angular scans
for changes from the top component node, all the way to the bottom leaves of the
tree.

Advanced Components 553

Default change detection

In our diagram above, the component in blue changed, but as we can see, it triggered
checks for the whole component tree. Objects that were checked are indicated in red
(note that the component itself was also checked).

It is natural to think that this check may be a very expensive operation. However,
due to a number of optimizations (that make Angular code eligible for further
optimization by the JavaScript engine), it’s actually surprisingly fast.

Customizing Change Detection

There are times that the built-in or default change detection mechanism may be
overkill. One example is if you’re using immutable objects or if your application

Advanced Components 554

architecture relies on observables. In these cases, Angular provides mechanisms for
configuring the change detection system so that you get very fast performance.

The first way to change the change detector behavior is by telling a component that
it should only be checked if one of its input values change.

To recap, an input value is an attribute your component receives from the outside
world. For instance, in this code:

1 class Person {

2 constructor(public name: string, public age: string) {}

3 }

4

5 @Component({

6 selector: 'mycomp',

7 template: `

8 <div>

9 {{ person.name }}

10 is {{ person.age }} years old.

11 </div>

12 `

13 })

14 class MyComp {

15 @Input() person: Person;

16 }

We have person as an input attribute. Now, if we want to make this component
change only when its input attribute changes, we just need to change the change
detection strategy, by setting its changeDetection attribute to ChangeDetection-

Strategy.OnPush.

By the way, if you’re curious, the default value for changeDetection is
ChangeDetectionStrategy.Default.

Let’s write a small experimentwith two components. The first onewill use the default
change detection behavior and the other will use the OnPush strategy:

Advanced Components 555

code/advanced-components/src/app/change-detection/on-push-demo/profile.model.ts

1 /**

2 * User Profile object, stores the first and

3 * last name as well as a function that gives the time

4 **/

5 export class Profile {

6 constructor(public first: string, public last: string) {}

7

8 lastChanged() {

9 return new Date();

10 }

11 }

So we start with some imports and we declare a Profile class that will be used
as the input in both of our components. Notice that we also created a method
called lastChange() on the Profile class. It will help us determine when the change
detection is triggered. When a given component is marked as needing to be checked,
this method will be called, since it’s present on the template. So this method will
reliably indicate the last time the component was checked for changes.

Next, we declare the DefaultChangeDetectionComponent that will use the default
change detection strategy:

code/advanced-components/src/app/change-detection/on-push-demo/default-change-
detection.component.ts

1 import {

2 Component,

3 Input

4 } from '@angular/core';

5 import { Profile } from './profile.model';

6

7 @Component({

8 selector: 'app-default-change-detection',

9 templateUrl: './default-change-detection.component.html'

10 })

11 export class DefaultChangeDetectionComponent {

12 @Input() profile: Profile;

13 }

and template:

Advanced Components 556

code/advanced-components/src/app/change-detection/on-push-demo/default-change-
detection.component.html

1 <h4 class="ui horizontal divider header">

2 Default Strategy

3 </h4>

4

5 <form class="ui form">

6 <div class="field">

7 <label>First Name</label>

8 <input

9 type="text"

10 [(ngModel)]="profile.first"

11 name="first"

12 placeholder="First Name">

13 </div>

14 <div class="field">

15 <label>Last Name</label>

16 <input

17 type="text"

18 [(ngModel)]="profile.last"

19 name="last"

20 placeholder="Last Name">

21 </div>

22 </form>

23

24 <h5>Updates if either changes (e.g. more often)</h5>

25 <div>

26 {{profile.lastChanged() | date:'medium'}}

27 </div>

And a second component using OnPush strategy:

Advanced Components 557

code/advanced-components/src/app/change-detection/on-push-demo/on-push-change-
detection.component.ts

1 import {

2 Component,

3 Input,

4 ChangeDetectionStrategy

5 } from '@angular/core';

6 import { Profile } from './profile.model';

7

8 @Component({

9 selector: 'app-on-push-change-detection',

10 changeDetection: ChangeDetectionStrategy.OnPush,

11 templateUrl: './on-push-change-detection.component.html'

12 })

13 export class OnPushChangeDetectionComponent {

14 @Input() profile: Profile;

15 }

As we can see, both components use the same template. The only thing that is
different is the header.

Finally, let’s add the component that will render both components side by side:

code/advanced-components/src/app/change-detection/on-push-demo/on-push-
demo.component.ts

1 import { Component } from '@angular/core';

2 import { Profile } from './profile.model';

3

4 @Component({

5 selector: 'app-on-push-demo',

6 template: `

7 <div class="ui page grid">

8 <div class="two column row">

9 <div class="column area">

10 <app-default-change-detection

11 [profile]="profile1">

12 </app-default-change-detection>

13 </div>

14 <div class="column area">

15 <app-on-push-change-detection

16 [profile]="profile2">

17 </app-on-push-change-detection>

18 </div>

Advanced Components 558

19 </div>

20 </div>

21 `

22 })

23 export class OnPushDemoComponent {

24 profile1: Profile = new Profile('Felipe', 'Coury');

25 profile2: Profile = new Profile('Nate', 'Murray');

26 }

When we run this application, we should see both components rendered like below:

Default vs. OnPush strategies

When we change something on the component on the left, with the default strategy,
we notice that the timestamp for the component on the right doesn’t change:

Advanced Components 559

OnPush changed, default got checked

To understand why this happened, let’s check this new tree of components:

Advanced Components 560

Tree of components

Angular checks for changes from the top to the bottom, so it queried first OnPushDe-
moComponent, then DefaultChangeDetectionComponent and finally OnPushChangeDe-

tectionComponent.When it inferred that OnPushChangeDetectionComponent changed,
it updates all the components of the tree, from top to bottom, making the Default-
ChangeDetectionComponent to be rendered again.

Now when we change the value of the component on the right:

Advanced Components 561

Default changed, OnPush didn’t get checked

So now the change detection engine kicked in, the DefaultChangeDetectionCompo-
nent component was checked but OnPushChangeDetectionComponent wasn’t. This
happened because when we set the OnPush strategy for this component, it made the
change detection kick in for this component only when one of its input attributes
change. Changing other components of the tree doesn’t trigger this component’s
change detector.

Zones

Under the hood, Angular uses a library called Zones to automatically detect changes
and trigger the change detection mechanism. Zones will automatically tell Angular
that something changed under the most common scenarios:

• when a DOM Event occurs (like click, change, etc.)
• when an HTTP request is resolved
• when a Timer is triggered (setTimeout or setInterval)

Advanced Components 562

However, there are scenarios where Zones won’t be able to automatically identify
that something changed. That’s another scenario where theOnPush strategy can be
very useful.

A few examples of things that are out of the Zones control, would be:

• using a third party library that runs asynchronously
• immutable data
• Observables

these are perfect candidates for using OnPush along with a technique to manually
hint Angular that something changed.

Observables and OnPush

Let’s write a component that receives an Observable as a parameter. Every time we
receive a value from this observable, we will increment a counter that is a property
of the component.

If we were using the regular change detection strategy, any time we incremented the
counter, we would get change detection triggered by Angular. However, we will have
this component use the OnPush strategy and, instead of letting the change detector
kick in for each increment, we’ll only kick it when the number is a multiple of 5 or
when the observable completes.

In order to do that, let’s write our component:

code/advanced-components/src/app/change-detection/observables-demo/observable-change-
detection.component.ts

1 import {

2 Component,

3 OnInit,

4 Input,

5 ChangeDetectionStrategy,

6 ChangeDetectorRef

7 } from '@angular/core';

8 import { Observable } from 'rxjs/Rx';

9

10 @Component({

11 selector: 'app-observable-change-detection',

Advanced Components 563

12 changeDetection: ChangeDetectionStrategy.OnPush,

13 template: `

14 <div>

15 <div>Total items: {{counter}}</div>

16 </div>

17 `

18 })

19 export class ObservableChangeDetectionComponent implements OnInit {

20 @Input() items: Observable<number>;

21 counter = 0;

22

23 constructor(private changeDetector: ChangeDetectorRef) {

24 }

25

26 ngOnInit() {

27 this.items.subscribe((v) => {

28 console.log('got value', v);

29 this.counter++;

30 if (this.counter % 5 === 0) {

31 this.changeDetector.markForCheck();

32 }

33 },

34 null,

35 () => {

36 this.changeDetector.markForCheck();

37 });

38 }

39 }

Let’s break down the code a bit so we can make sure we understand. First, we’re
declaring the component to take items as the input attribute and to use the OnPush

detection strategy:

Advanced Components 564

code/advanced-components/src/app/change-detection/observables-demo/observable-change-
detection.component.ts

10 @Component({

11 selector: 'app-observable-change-detection',

12 changeDetection: ChangeDetectionStrategy.OnPush,

13 template: `

14 <div>

15 <div>Total items: {{counter}}</div>

16 </div>

17 `

18 })

Next, we’re storing our input attribute on the items property of the component class,
and setting another property, called counter, to 0.

code/advanced-components/src/app/change-detection/observables-demo/observable-change-
detection.component.ts

19 export class ObservableChangeDetectionComponent implements OnInit {

20 @Input() items: Observable<number>;

21 counter = 0;

Then we use the constructor to get hold of the component’s change detector:

code/advanced-components/src/app/change-detection/observables-demo/observable-change-
detection.component.ts

23 constructor(private changeDetector: ChangeDetectorRef) {

24 }

Then, during the component initialization, on the ngOnInit hook:

Advanced Components 565

code/advanced-components/src/app/change-detection/observables-demo/observable-change-
detection.component.ts

26 ngOnInit() {

27 this.items.subscribe((v) => {

28 console.log('got value', v);

29 this.counter++;

30 if (this.counter % 5 === 0) {

31 this.changeDetector.markForCheck();

32 }

33 },

34 null,

35 () => {

36 this.changeDetector.markForCheck();

37 });

38 }

We’re subscribing to the Observable. The subscribemethod takes three callbacks as
arguments: onNext, onError and onCompleted.

Our onNext callback will print out the value we got, then increment the counter.
Finally, if the current counter value is a multiple of 5, we call the change detector’s
markForCheck method. That’s the method we use whenever we want to tell Angular
that a change has been made, so the change detector should kick in.

Then for the onError callback, we’re using null, indicating we don’t want to handle
this scenario.

Finally, for the onComplete callback, we’re also triggering the change detector, so the
final counter can be displayed.

Now, on to the application component code, that will create the subscriber:

Advanced Components 566

code/advanced-components/src/app/change-detection/observables-demo/observables-
demo.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import { Observable } from 'rxjs/Rx';

3

4 @Component({

5 selector: 'app-observables-demo',

6 template: `

7 <app-observable-change-detection

8 [items]="itemObservable">

9 </app-observable-change-detection>

10 `

11 })

12 export class ObservablesDemoComponent implements OnInit {

13 itemObservable: Observable<number>;

14

15 constructor() { }

16

17 ngOnInit() {

18 this.itemObservable = Observable.timer(100, 100).take(101);

19 }

20

21 }

The important line here is the following:

1 this.itemObservable = Observable.timer(100, 100).take(101);

This line creates the Observable we’re passing to the component on the items

input attribute. We’re passing two parameters to the timer method: the first is the
number of milliseconds to wait before producing the first value and the second is
the milliseconds to wait between values. So this observable will generate sequential
values every 100 values forever.

Since we don’t want the observable to run forever, we use the take method, to take
only the first 101 values.

When we run this code, we’ll see that the counter will only be updated for each
5 values obtained from the observer and also when the observable completes,
generating a final value of 101:

Advanced Components 567

Manually triggering change detection

Summary

Angular provides us with many tools we can use for writing advanced components.
Using the techniques in this chapter you will be able to write nearly any component
functionality you wish.

Testing
After spending hours, days, months on a web app you’re finally ready to release it to
the world. Plenty of hard work and time has been poured into it and now it’s time for
it to pay off… and then boom: a blocking bug shows up that prevents anyone from
signing up.

Test driven?

Testing can help reveal bugs before they appear, instill confidence in your web
application, and makes it easy to onboard new developers into the application. There
is little doubt about the power of testing amongst the world of software development.
However, there is debate about how to go about it.

Is it better to write the tests first and then write the implementation to make those
tests pass or would it be better to validate that code that we’ve already written
is correct? It’s pretty odd to think that this is a source of contention across the
development community, but there is a debate that can get pretty heated as to which
is the right way to handle testing.

In our experience, particularly when coming from a prototype-heavy background,
we focus on building test-able code. Although your experience may differ, we have
found that while we are prototyping applications, testing individual pieces of code
that are likely to change can double or triple the amount of work it takes to keep them
up. In contrast, we focus on building our applications in small components, keeping
large amounts of functionality broken into several methods which allows us to test
the functionality of a part of the larger picture. This is what we mean when we say
testable code.

An alternative methodology to prototyping (and then testing after) is called
“Red-Green-Refactor”. The idea is that youwrite your tests first and they
fail (red) because you haven’t written any code yet. Only after you have
failing tests do you go on to write your implementation code until it all
passes (green).

Testing 569

Of course, the decision of what to test is up to you and your team, however we’ll
focus on how to test your applications in this chapter.

End-to-end vs. Unit Testing

There are twomajor ways to test your applications: end-to-end testing or unit testing.

If you take a top-down approach on testing you write tests that see the application
as a “black box” and you interact with the application like a user would and evaluate
if the app seems to work from the “outside”. This top-down technique of testing is
called End to End testing.

In the Angular world, the tool that is mostly used is called Protractor¹³³.
Protractor is a tool that opens a browser and interacts with the application,
collecting results, to check whether the testing expectations were met.

The second testing approach commonly used is to isolate each part of the application
and test it in isolation. This form of testing is called Unit Testing.

In Unit Testing we write tests that provide a given input to a given aspect of that unit
and evaluate the output to make sure it matches our expectations.

In this chapter we’re going to be covering how to unit test your Angular apps.

Testing Tools

In order to test our apps, we’ll use two tools: Jasmine and Karma.

Jasmine

Jasmine¹³⁴ is a behavior-driven development framework for testing JavaScript code.

Using Jasmine, you can set expectations about what your code should do when
invoked.
¹³³https://angular.github.io/protractor/#/
¹³⁴http://jasmine.github.io/2.4/introduction.html

https://angular.github.io/protractor/#/
http://jasmine.github.io/2.4/introduction.html
https://angular.github.io/protractor/#/
http://jasmine.github.io/2.4/introduction.html

Testing 570

For instance, let’s assume we have a sum function on a Calculator object. We want
to make sure that adding 1 and 1 results in 2. We could express that test (also called
a _spec), by writing the following code:

describe(‘Calculator’, () ⇒ { it(‘sums 1 and 1 to 2’, () ⇒ { var calc = new Calculator();
expect(calc.sum(1, 1)).toEqual(2); }); });

One of the nice things about Jasmine is how readable the tests are. You can see here
that we expect the calc.sub operation to equal 2.

We organize our tests with describe blocks and it blocks.

Normally we use describe for each logical unit we’re testing and inside that we use
one it for each expectation you want to assert. However, this isn’t a hard and fast
rule. You’ll often see an it block contain several expectations.

On the Calculator example above we have a very simple object. For that reason, we
used one describe block for the whole class and one it block for each method.

This is not the case most of the times. For example, methods that produce different
outcomes depending on the input will probably have more than one it block
associated. On those cases, it’s perfectly fine to have nested describes: one for the
object and one for each method, and then different assertions inside individual it
blocks.

We’ll be looking at a lot of describe and it blocks throughout this chapter, so don’t
worry if it isn’t clear when to use one vs. the other. We’ll be showing lots of examples.

For more information about Jasmine and all its syntax, check out the Jasmine
documentation page¹³⁵.

Karma

With Jasmine we can describe our tests and their expectations. Now, in order to
actually run the tests we need to have a browser environment.

That’s where Karma comes in. Karma allows us to run JavaScript code within a
browser like Chrome or Firefox, or on a headless browser (or a browser that doesn’t
expose a user interface) like PhantomJS.

¹³⁵http://jasmine.github.io/2.4/introduction.html

http://jasmine.github.io/2.4/introduction.html
http://jasmine.github.io/2.4/introduction.html
http://jasmine.github.io/2.4/introduction.html

Testing 571

Writing Unit Tests

Our main focus on this section will be to understand how we write unit tests against
different parts of our Angular apps.

We’re going to learn to test Services,Components,HTTP requests andmore. Along
the way we’re also going to see a couple of different techniques to make our code
more testable.

Angular Unit testing framework

Angular provides its own set of classes that build upon the Jasmine framework to
help writing unit testing for the framework.

The main testing framework can be found on the @angular/core/testing package.
(Although, for testing components we’ll use the @angular/compiler/testing pack-
age and @angular/platform-browser/testing for some other helpers. But more on
that later.)

If this is your first time testingAngular I want to prepare you for something:
When you write tests for Angular, there is a bit of setup.

For instance, when we have dependencies to inject, we often manually
configure them.Whenwewant to test a component, we have to use testing-
helpers to initialize them. Andwhenwewant to test routing, there are quite
a few dependencies we need to structure.

If it feels like there is a lot of setup, don’t worry: you’ll get the hang of it
and find that the setup doesn’t change that much from project to project.
Besides, we’ll walk you through each step in this chapter.

As always, you can find all of the sample code for this chapter in the
code download. Looking over the code directly in your favorite editor can
provide a good overview of the details we cover in this chapter. We’d
encourage you to keep the code open as you go through this chapter.

Testing 572

Setting Up Testing

Earlier in the Routing Chapter we created an application for searching for music. In
this chapter, let’s write tests for that application.

Karma requires a configuration in order to run. So the first thing we need to do to
setup Karma is to create a karma.conf.js file.

Let’s karma.conf.js file on the root path of our project, like so:

Since we’re using Angular CLI, this karma.conf.js file is already created
for us! However, if your project does not use Angular CLI, you may need
to setup Karma on your own.

code/routes/music/karma.conf.js

1 // Karma configuration file, see link for more information

2 // https://karma-runner.github.io/1.0/config/configuration-file.html

3

4 module.exports = function(config) {

5 let configuration = {

6 basePath: '',

7 frameworks: ['jasmine', '@angular-devkit/build-angular'],

8 plugins: [

9 require('karma-jasmine'),

10 require('karma-chrome-launcher'),

11 require('karma-jasmine-html-reporter'),

12 require('karma-coverage-istanbul-reporter'),

13 require('@angular-devkit/build-angular/plugins/karma')

14],

15 client: {

16 clearContext: false // leave Jasmine Spec Runner output visible in browser

17 },

18 coverageIstanbulReporter: {

19 dir: require('path').join(__dirname, '../coverage'),

20 reports: ['html', 'lcovonly'],

21 fixWebpackSourcePaths: true

22 },

23 reporters: ['progress', 'kjhtml'],

24 port: 9876,

25 colors: true,

26 logLevel: config.LOG_INFO,

Testing 573

27 autoWatch: true,

28 browsers: ['Chrome'],

29 singleRun: false

30 };

31

32 if (process.env.TRAVIS) {

33 configuration.customLaunchers = {

34 Chrome_travis_ci: {

35 base: 'Chrome',

36 flags: ['--no-sandbox']

37 }

38 };

39 configuration.browsers = ['Chrome_travis_ci'];

40 }

41

42 config.set(configuration);

43 };

Don’t worry too much about this file’s contents right now, just keep in mind a few
things about it:

• sets PhantomJS as the target testing browser;
• uses Jasmine karma framework for testing;
• uses a WebPack bundle called test.bundle.js that basically wraps all our
testing and app code;

The next step is to create a new test folder to hold our test files.

mkdir test

Testing Services and HTTP

Services in Angular start out their life as plain classes. In one sense, this makes our
services easy to test because we can sometimes test them directly without using
Angular.

With Karma configuration done, let’s start testing the SpotifyService class. If we
remember, this service works by interacting with the Spotify API to retrieve album,
track and artist information.

Testing 574

Inside the test folder, let’s create a service subfolder where all our service tests will
go. Finally, let’s create our first test file inside it, called spotify.service.spec.ts.

Nowwe can start putting this test file together. The first thing we need to do is import
the test helpers from the @angular/core/testing package:

code/routes/music/src/app/spotify.service.spec.ts

1 import { inject, fakeAsync, tick, TestBed } from "@angular/core/testing";

Next, we’ll import a couple more classes:

code/routes/music/src/app/spotify.service.spec.ts

2 import {

3 HttpTestingController,

4 HttpClientTestingModule

5 } from "@angular/common/http/testing";

6 import {

7 HttpClient,

8 HttpBackend,

9 HttpRequest,

10 HttpResponse,

11 HttpHandler

12 } from "@angular/common/http";

Since our service uses HTTP requests, we’ll import the HttpTestingController

class from @angular/common/http/testing package. This class will help us set
expectations and verify HTTP requests.

The last thing we need to import is the class we’re testing:

code/routes/music/src/app/spotify.service.spec.ts

14 import { SpotifyService } from "./spotify.service";

HTTP Considerations

We could start writing our tests right now, but during each test execution we would
be calling out and hitting the Spotify server. This is far from ideal for two reasons:

Testing 575

1. HTTP requests are relatively slow and as our test suite grows, we’d notice it
takes longer and longer to run all of the tests.

2. Spotify’s API has a quota, and if our whole team is running the tests, we might
use up our API call resources needlessly

3. If we are offline or if Spotify is down or inaccessible our tests would start
breaking, even though our code might technically be correct

This is a good hint when writing unit tests: isolate everything that you don’t control
before testing.

In our case, this piece is the Spotify service. The solution is that we will replace the
HTTP request with something that would behave like it, but will not hit the real
Spotify server.

Doing this in the testing world is calledmocking a dependency. They are sometimes
also called stubbing a dependency.

You can read more about the difference between Mocks and Stubs in this
article Mocks are not Stubs¹³⁶

Let’s pretend we’re writing code that depends on a given Car class.

This class has a bunch of methods: you can start a car instance, stop it, park it and
getSpeed of that car.

Let’s see how we could use stubs and mocks to write tests that depend on this class.

Stubs

Stubs are objects we create on the fly, with a subset of the behaviors our dependency
has.

Let’s write a test that just interacts with the start method of the class.

You could create a stub of that Car class on-the-fly and inject that into the class
you’re testing:

¹³⁶http://martinfowler.com/articles/mocksArentStubs.html

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

Testing 576

describe("Speedtrap", function() {

it("tickets a car at more than 60mph", function() {

var stubCar = {

getSpeed: function() {

return 61;

}

};

var speedTrap = new SpeedTrap(stubCar);

speedTrap.ticketCount = 0;

speedTrap.checkSpeed();

expect(speedTrap.ticketCount).toEqual(1);

});

});

This would be a typical case for using a stub and we’d probably only use it locally to
that test.

Mocks

Mocks in our case will be a more complete representation of objects, that overrides
parts or all of the behavior of the dependency. Mocks can, and most of the time will
be reused by more than one test across our suite.

They will also be used sometimes to assert that given methods were called the way
they were supposed to be called.

One example of a mock version of our Car class would be:

class MockCar {

startCallCount: number = 0;

start() {

this.startCallCount++;

}

}

And it would be used to write another test like this:

Testing 577

describe("CarRemote", function() {

it("starts the car when the start key is held", function() {

var car = new MockCar();

var remote = new CarRemote();

remote.holdButton("start");

expect(car.startCallCount).toEqual(1);

});

});

The biggest difference between a mock and a stub is that:

• a stub provides a subset of functionality with “manual” behavior overrides
whereas

• a mock generally sets expectations and verifies that certain methods were called

HttpClient HttpTestingController

Now that we have this background in mind, let’s go back to writing our service test
code.

Interacting with the live Spotify service every time we run our tests is a poor idea
but thankfully Angular provides us with a way to create fake HTTP calls with
HttpTestingController.

This class can be injected into a HttpClient instance and gives us control of how
we want the HTTP interaction to act. We can interfere and assert in a variety of
different ways: we can manually set a response, simulate an HTTP error, and add
expectations, like asserting the URL being requested matches what we want, if the
provided request parameters are correct and a lot more.

So the idea here is that we’re going to provide our code with a “fake” HttpClient
library. This “fake” library will appear to our code to be the real HttpClient library:
all of the methods will match, it will return responses and so on. However, we’re not
actually going to make the requests.

In fact, beyond not making the requests, our HttpTestingController will actually
allow us to setup expectations and watch for behaviors we expect.

Testing 578

TestBed.configureTestingModule and Providers

When we test our Angular apps we need to make sure we configure the top-level
NgModule that we will use for this test. When we do this, we can configure providers,
declare components, and import other modules: just like you would when using
NgModules generally.

Sometimes when testing Angular code, we manually setup injections. This is good
because it gives us more control over what we’re actually testing.

So in the case of testing HttpClient requests, we don’t want to inject the “real”
HttpClient class, but instead wewant to inject something that looks like HttpClient,
but really intercepts the requests and returns the responses we configure.

To do that, we create a version of the HttpClient class that uses HttpTestingCon-
troller internally.

To do this, we use the TestBed.configureTestingModule in the beforeEach hook.
This hook takes a callback function that will be called before each test is run, giving
us a great opportunity to configure alternative class implementations.

code/routes/music/src/app/spotify.service.spec.ts

16 describe("SpotifyService", () => {

17 beforeEach(() => {

18 TestBed.configureTestingModule({

19 imports: [HttpClientTestingModule],

20 providers: [SpotifyService]

21 });

22 });

Notice that TestBed.configureTestingModule accepts an array of providers in the
providers key to be used by the test injector.

Testing getTrack

Now, when writing tests for the service, we want to verify that we’re calling the
correct URL.

If you haven’t looked at the Routing chapter music example in a while, you
can find the code for this example here

Testing 579

Let’s write a test for the getTrack method:

code/routes/music/src/app/spotify.service.ts

42 getTrack(id: string): Observable<any> {

43 return this.query(`/tracks/${id}`);

44 }

If you remember how that method works, it uses the query method, that builds the
URL based on the parameters it receives:

code/routes/music/src/app/spotify.service.ts

18 query(URL: string, params?: Array<string>): Observable<any> {

19 let queryURL = `${SpotifyService.BASE_URL}${URL}`;

20 if (params) {

21 queryURL = `${queryURL}?${params.join("&")}`;

22 }

23 const apiKey = environment.spotifyApiKey;

24 const headers = new HttpHeaders({

25 Authorization: `Bearer ${apiKey}`

26 });

27 const options = {

28 headers: headers

29 };

30

31 return this.http.request("GET", queryURL, options);

32 }

Since we’re passing /tracks/${id}we assume that when calling getTrack('TRACK_-
ID') the expected URL will be https://api.spotify.com/v1/tracks/TRACK_ID.

Here is how we write the test for this:

Testing 580

describe("getTrack", () => {

it("retrieves using the track ID", inject(

[SpotifyService, HttpTestingController],

fakeAsync((spotifyService, mockBackend) => {

var res;

mockBackend.connections.subscribe(c => {

expect(c.request.url).toBe(

"https://api.spotify.com/v1/tracks/TRACK_ID"

);

let response = new ResponseOptions({ body: '{"name": "felipe"}' });

c.mockRespond(new Response(response));

});

spotifyService.getTrack("TRACK_ID").subscribe(_res => {

res = _res;

});

tick();

expect(res.name).toBe("felipe");

})

));

});

This seems like a lot to grasp at first, so let’s break it down a bit:

Every time we write tests with dependencies, we need to ask Angular injector to
provide us with the instances of those classes. To do that we use:

inject([Class1, /* ..., */ ClassN], (instance1, /* ..., */ instanceN) => {

// ... testing code ...

});

When you are testing code that returns either a Promise or an RxJS Observable,
you can use fakeAsync helper to test that code as if it were synchronous. This way
Promises are fulfilled andObservables are notified immediately after you call tick().

So in this code:

Testing 581

inject(

[SpotifyService, HttpTestingController],

fakeAsync((spotifyService, mockBackend) => {

// ... testing code ...

})

);

We’re getting two variables: spotifyService and mockBackend. The first one has a
concrete instance of the SpotifyService and the second is an instance HttpTesting-
Controller class. Notice that the arguments to the inner function (spotifyService,
mockBackend) are injections of the classes specified in the first argument array of the
inject function (SpotifyService and HttpTestingController).

We’re also running inside fakeAsync which means that async code will be run
synchronously when tick() is called.

Now that we’ve setup the injections and context for our test, we can start writing our
“actual” test. We start by declaring a res variable that will eventually get the HTTP
call response. Next we subscribe to mockBackend.connections:

var res;

mockBackend.connections.subscribe(c => { ... });

Here we’re saying that whenever a new connection comes in to mockBackend we
want to be notified (e.g. call this function).

We want to verify that the SpotifyService is calling out to the correct URL
given the track id TRACK_ID. So what we do is specify an expectation that the
URL is as we would expect. We can get the URL from the connection c via
c.request.url. So we setup an expectation that c.request.url should be the string
'https://api.spotify.com/v1/tracks/TRACK_ID':

expect(c.request.url).toBe("https://api.spotify.com/v1/tracks/TRACK_ID");

When our test is run, if the request URL doesn’t match, then the test will fail.

Now that we’ve received our request and verified that it is correct, we need to craft
a response. We do this by creating a new ResponseOptions instance. Here we specify
that it will return the JSON string: {"name": "felipe"} as the body of the response.

Testing 582

let response = new ResponseOptions({ body: '{"name": "felipe"}' });

Finally, we tell the connection to replace the response with a Response object that
wraps the ResponseOptions instance we created:

c.mockRespond(new Response(response));

An interesting thing to note here is that your callback function in subscribe
can be as sophisticated as youwish it to be. You could have conditional logic
based on the URL, query parameters, or anything you can read from the
request object etc.

This allows us to write tests for nearly every possible scenario our code
might encounter.

We have now everything setup to call the getTrack method with TRACK_ID as a
parameter and tracking the response in our res variable:

spotifyService.getTrack("TRACK_ID").subscribe(_res => {

res = _res;

});

If we ended our test here, we would be waiting for the HTTP call to be made and
the response to be fulfilled before the callback function would be triggered. It would
also happen on a different execution path and we’d have to orchestrate our code to
sync things up. Thankfully using fakeAsync takes that problem away. All we need
to do is call tick() and, like magic, our async code will be executed:

tick();

We now perform one final check just to make sure our response we setup is the one
we received:

expect(res.name).toBe("felipe");

If you think about it, the code for all the methods of this service are very similar. So
let’s extract the snippet we use to setup the URL expectation into a function called
expectURL:

Testing 583

code/routes/music/src/app/spotify.service.spec.ts

25 function expectURL(backend: HttpTestingController, url: string) {

26 const testRequest = backend.expectOne(url);

27 testRequest.flush({ name: "felipe" });

28 return testRequest;

29 }

Following the same lines, it should be very simple to create similar tests for getArtist
and getAlbum methods:

code/routes/music/src/app/spotify.service.spec.ts

49 describe("getArtist", () => {

50 it("retrieves using the artist ID", inject(

51 [SpotifyService, HttpTestingController],

52 fakeAsync((svc, backend) => {

53 let res;

54 svc.getArtist("ARTIST_ID").subscribe(_res => {

55 res = _res;

56 });

57 expectURL(backend, "https://api.spotify.com/v1/artists/ARTIST_ID");

58 tick();

59 expect(res.name).toBe("felipe");

60 })

61));

62 });

63

64 describe("getAlbum", () => {

65 it("retrieves using the album ID", inject(

66 [SpotifyService, HttpTestingController],

67 fakeAsync((svc, backend) => {

68 let res;

69 svc.getAlbum("ALBUM_ID").subscribe(_res => {

70 res = _res;

71 });

72 expectURL(backend, "https://api.spotify.com/v1/albums/ALBUM_ID");

73 tick();

74 expect(res.name).toBe("felipe");

75 })

76));

77 });

Testing 584

Now searchTrack is slightly different: instead of calling query, this method uses the
search method:

code/routes/music/src/app/spotify.service.ts

38 searchTrack(query: string): Observable<any> {

39 return this.search(query, "track");

40 }

And then search calls query with /search as the first argument and an Array
containing q=<query> and type=track as the second argument:

code/routes/music/src/app/spotify.service.ts

34 search(query: string, type: string): Observable<any> {

35 return this.query(`/search`, [`q=${query}`, `type=${type}`]);

36 }

Finally, querywill transform the parameters into a URL pathwith a QueryString. So
now, the URL we expect to call ends with /search?q=<query>&type=track.

Let’s now write the test for searchTrack that takes into consideration what we
learned above:

code/routes/music/src/app/spotify.service.spec.ts

79 describe("searchTrack", () => {

80 it("searches type and term", inject(

81 [SpotifyService, HttpTestingController],

82 fakeAsync((svc, backend) => {

83 let res;

84 svc.searchTrack("TERM").subscribe(_res => {

85 res = _res;

86 });

87 expectURL(

88 backend,

89 "https://api.spotify.com/v1/search?q=TERM&type=track"

90);

91 tick();

92 expect(res.name).toBe("felipe");

93 })

94));

95 });

Testing 585

The test ended up also being very similar to the ones we wrote so far. Let’s review
what this test does:

• it hooks into the HTTP lifecycle, by adding a callback when a new HTTP
connection is initiated

• it sets an expectation for the URL we expect the connection to use including
the query type and the search term

• it calls the method we’re testing, searchTrack
• it then tells Angular to complete all the pending async calls
• it finally asserts that we have the expected response

In essence, when testing services our goals should be:

1. Isolate all the dependencies by using stubs or mocks
2. In case of async calls, use fakeAsync and tick to make sure they are fulfilled
3. Call the service method you’re testing
4. Assert that the returning value from the method matches what we expect

Now let’s move on to the classes that usually consume the services: components.

Testing Routing to Components

When testing components, we can either:

1. write tests that will interact with the component from the outside, passing
attributes in and checking how the markup is affected or

2. test individual component methods and their output.

Those test strategies are known as black box and white box testing, respectively.
During this section, we’ll see a mix of both.

We’ll begin bywriting tests for the ArtistComponent class, which is one of the simpler
components we have. This initial set of tests will test the component’s internals, so
it falls into the white box category of testing.

Before we jump into it, let’s remember what ArtistComponent does:

The first thing we do on the class constructor is retrieve the id from the routeParams
collection:

Testing 586

code/routes/music/src/app/artist/artist.component.ts

22 constructor(private route: ActivatedRoute, private spotify: SpotifyService,

23 private location: Location) {

24 route.params.subscribe(params => { this.id = params['id']; });

25 }

And with that we have our first obstacle. How can we retrieve the ID of a route
without an available running router?

Creating a Router for Testing

Remember that when we write tests in Angular we manually configure many of the
classes that are injected. Routing (and testing components) has a daunting number of
dependencies that we need to inject. That said, once it’s configured, it isn’t something
we change very much and it’s very easy to use.

Whenwewrite tests it’s often convenient to use beforeEachwith TestBed.configureTestingModule
to set the dependencies that can be injected. In the case of testing our ArtistCom-
ponent we’re going to create a custom function that will create and configure our
router for testing:

code/routes/music/src/app/artist/artist.component.spec.ts

21 describe('ArtistComponent', () => {

22 beforeEach(async(() => {

23 configureMusicTests();

24 }));

We define configureMusicTests in the helper file MusicTestHelpers.ts. Let’s look
at that now.

Here’s the implementation of configureMusicTests. Don’t worry, we’ll explain each
part:

Testing 587

code/routes/music/src/app/test/test.module.ts

68 export function configureMusicTests() {

69 const mockSpotifyService: MockSpotifyService = new MockSpotifyService();

70

71 TestBed.configureTestingModule({

72 imports: [

73 { // TODO RouterTestingModule.withRoutes coming soon

74 ngModule: RouterTestingModule,

75 providers: [provideRoutes(routerConfig)]

76 },

77 TestModule

78],

79 providers: [

80 mockSpotifyService.getProviders(),

81 {

82 provide: ActivatedRoute,

83 useFactory: (r: Router) => r.routerState.root, deps: [Router]

84 }

85]

86 });

87 }

We start by creating an instance of MockSpotifyService that we will use to mock
the real implementation of SpotifyService.

Next we use a class called TestBed and call configureTestingModule. TestBed is a
helper library that ships with Angular to help make testing easier.

In this case, TestBed.configureTestingModule is used to configure the NgModule

used for testing. You can see that we provide an NgModule configuration as the
argument which has:

• imports and
• providers

In our imports we’re importing

• The RouterTestingModule and configuring it with our routerConfig - this
configures the routes for testing

Testing 588

• The TestModule - which is the NgModule which declares all of the components
we will test (see MusicTestHelpers.ts for the full details)

In providers

• We provide the MockSpotifyService (via mockSpotifyService.getProviders())
• and the ActivatedRoute

Let’s take a closer look at these starting with the Router.

Router

One thing we haven’t talked about yet is what routes we want to use when testing.
There are many different ways of doing this. First we’ll look at what we’re doing
here:

code/routes/music/src/app/test/test.module.ts

32 @Component({

33 selector: 'blank-cmp',

34 template: ``

35 })

36 export class BlankCmp {

37 }

38

39 @Component({

40 selector: 'root-cmp',

41 template: `<router-outlet></router-outlet>`

42 })

43 export class RootCmp {

44 }

45

46 export const routerConfig: Routes = [

47 { path: '', component: BlankCmp },

48 { path: 'search', component: SearchComponent },

49 { path: 'artists/:id', component: ArtistComponent },

50 { path: 'tracks/:id', component: TrackComponent },

51 { path: 'albums/:id', component: AlbumComponent }

52];

Testing 589

Here instead of redirecting (like we do in the real router config) for the empty URL,
we’re just using BlankCmp.

Of course, if you want to use the same RouterConfig as in your top-level app then
all you need to do is export it somewhere and import it here.

If you have a more complex scenario where you need to test lots of different
route configurations, you could even accept a parameter to the musicTestProviders
function where you use a new router configuration each time.

There are many possibilities here and you’ll need to pick whichever fits best for your
team. This configuration works for cases where your routes are relatively static and
one configuration works for all of the tests.

Now that we have all of the dependencies, we create the new Router and call
r.initialNavigation() on it.

ActivatedRoute

The ActivatedRoute service keeps track of the “current route”. It requires the Router
itself as a dependency so we put it in deps and inject it.

MockSpotifyService

Earlier we tested our SpotifyService by mocking out the HTTP library that backed
it. Instead here, we’re going tomock out the whole service itself. Let’s look at how
we can mock this out, or any, service.

Mocking dependencies

If you look inside music/test you’ll find a mocks/spotify.ts file. Let’s take a look:

Testing 590

code/routes/music/src/app/test/spotify.service.mock.ts

1 import {SpyObject} from './test.helpers';

2 import {SpotifyService} from '../spotify.service';

3

4 export class MockSpotifyService extends SpyObject {

5 getAlbumSpy;

6 getArtistSpy;

7 getTrackSpy;

8 searchTrackSpy;

9 mockObservable;

10 fakeResponse;

Here we’re declaring the MockSpotifyService class, which will be a mocked version
of the real SpotifyService. These instance variables will act as spies.

Spies

A spy is a specific type of mock object that gives us two benefits:

1. we can simulate return values and
2. count how many times the method was called and with which parameters.

In order to use spies with Angular, we’re using the internal SpyObject class (it’s used
by Angular to test itself).

You can either declare a class by creating a new SpyObject on the fly or you can
make your mock class inherit from SpyObject, like we’re doing in our code.

The great thing inheriting or using this class gives us is the spy method. The spy

method lets us override a method and force a return value (as well as watch and
ensure the method was called). We use spy on our class constructor:

Testing 591

code/routes/music/src/app/test/spotify.service.mock.ts

12 constructor() {

13 super(SpotifyService);

14

15 this.fakeResponse = null;

16 this.getAlbumSpy = this.spy('getAlbum').and.returnValue(this);

17 this.getArtistSpy = this.spy('getArtist').and.returnValue(this);

18 this.getTrackSpy = this.spy('getTrack').and.returnValue(this);

19 this.searchTrackSpy = this.spy('searchTrack').and.returnValue(this);

20 }

The first line of the constructor call’s the SpyObject constructor, passing the concrete
class we’re mocking. Calling super(...) is optional, but when you do the mock class
it will inherit all the concrete class methods, so you can override just the pieces you’re
testing.

If you’re curious about how SpyObject is implemented you
can check it on the angular/angular repository, on the file
/modules/angular2/src/testing/testing_internal.ts¹³⁷

After calling super, we’re initializing the fakeResponse field, that we’ll use later to
null.

Next we declare spies that will replace the concrete class methods. Having a reference
to them will be helpful to set expectations and simulate responses while writing our
tests.

When we use the SpotifyService within the ArtistComponent, the real getArtist
method returns an Observable and the method we’re calling from our components
is the subscribe method:

¹³⁷https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/
testing/testing_internal.ts#L205

https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205
https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205
https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205
https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205

Testing 592

code/routes/music/src/app/artist/artist.component.ts

27 ngOnInit(): void {

28 this.spotify

29 .getArtist(this.id)

30 .subscribe((res: any) => this.renderArtist(res));

31 }

However, in our mock service, we’re going to do something tricky: instead of return-
ing an observable from getArtist, we’re returning this, the MockSpotifyService

itself. That means the return value of this.spotify.getArtist(this.id) above will
be the MockSpotifyService.

There’s one problem with doing this though: our ArtistComponent was expecting to
call subscribe on an Observable. To account for this, we’re going to define subscribe
on our MockSpotifyService:

code/routes/music/src/app/test/spotify.service.mock.ts

22 subscribe(callback) {

23 callback(this.fakeResponse);

24 }

Now when subscribe is called on our mock, we’re immediately calling the callback,
making the async call happen synchronously.

The other thing you’ll notice is that we’re calling the callback function with
this.fakeResponse. This leads us to the next method:

code/routes/music/src/app/test/spotify.service.mock.ts

26 setResponse(json: any): void {

27 this.fakeResponse = json;

28 }

This method doesn’t replace anything on the concrete service, but is instead a helper
method to allow the test code to set a given response (that would come from the
service on the concrete class) and with that simulate different responses.

Testing 593

code/routes/music/src/app/test/spotify.service.mock.ts

30 getProviders(): Array<any> {

31 return [{ provide: SpotifyService, useValue: this }];

32 }

This last method is a helper method to be used in TestBed.configureTestingModule

providers like we’ll see later when we get back to writing component tests.

Here’s what our MockSpotifyService looks like altogether:

code/routes/music/src/app/test/spotify.service.mock.ts

1 import {SpyObject} from './test.helpers';

2 import {SpotifyService} from '../spotify.service';

3

4 export class MockSpotifyService extends SpyObject {

5 getAlbumSpy;

6 getArtistSpy;

7 getTrackSpy;

8 searchTrackSpy;

9 mockObservable;

10 fakeResponse;

11

12 constructor() {

13 super(SpotifyService);

14

15 this.fakeResponse = null;

16 this.getAlbumSpy = this.spy('getAlbum').and.returnValue(this);

17 this.getArtistSpy = this.spy('getArtist').and.returnValue(this);

18 this.getTrackSpy = this.spy('getTrack').and.returnValue(this);

19 this.searchTrackSpy = this.spy('searchTrack').and.returnValue(this);

20 }

21

22 subscribe(callback) {

23 callback(this.fakeResponse);

24 }

25

26 setResponse(json: any): void {

27 this.fakeResponse = json;

28 }

29

30 getProviders(): Array<any> {

31 return [{ provide: SpotifyService, useValue: this }];

Testing 594

32 }

33 }

Back to Testing Code

Now that we have all our dependencies under control, it is easier to write our tests.
Let’s write our test for our ArtistComponent.

As usual, we start with imports:

code/routes/music/src/app/artist/artist.component.spec.ts

1 import {

2 async,

3 ComponentFixture,

4 TestBed,

5 inject,

6 fakeAsync,

7 } from '@angular/core/testing';

8 import { Router } from '@angular/router';

9 import { Location } from '@angular/common';

10 import {

11 advance,

12 createRoot,

13 RootCmp,

14 configureMusicTests

15 } from '../test/test.module';

16

17 import { MockSpotifyService } from '../test/spotify.service.mock';

18 import { SpotifyService } from '../spotify.service';

19 import { ArtistComponent } from './artist.component';

Next, before we can start to describe our tests configureMusicTests to ensure we
can access our musicTestProviders in each test:

Testing 595

code/routes/music/src/app/artist/artist.component.spec.ts

21 describe('ArtistComponent', () => {

22 beforeEach(async(() => {

23 configureMusicTests();

24 }));

Next, we’ll write a test for everything that happens during the initialization of the
component. First, let’s take a refresh look at what happens on initialization of our
ArtistComponent:

code/routes/music/src/app/artist/artist.component.ts

18 export class ArtistComponent implements OnInit {

19 id: string;

20 artist: Object;

21

22 constructor(private route: ActivatedRoute, private spotify: SpotifyService,

23 private location: Location) {

24 route.params.subscribe(params => { this.id = params['id']; });

25 }

26

27 ngOnInit(): void {

28 this.spotify

29 .getArtist(this.id)

30 .subscribe((res: any) => this.renderArtist(res));

31 }

Remember that during the creation of the component, we use route.params to
retrieve the current route id param and store it on the id attribute of the class.

When the component is initialized ngOnInit is triggered by Angular (because we
declared that this component implements OnInit. We then use the SpotifyService
to retrieve the artist for the received id, and we subscribe to the returned observable.
When the artist is finally retrieved, we call renderArtist, passing the artist data.

An important idea here is that we used dependency injection to get the SpotifySer-
vice, but remember, we created a MockSpotifyService!

So in order to test this behavior, let’s:

1. Use our router to navigate to the ArtistComponent, which will initialize the
component

Testing 596

2. Check our MockSpotifyService and ensure that the ArtistComponent did,
indeed, try to get the artist with the appropriate id.

Here’s the code for our test:

code/routes/music/src/app/artist/artist.component.spec.ts

26 describe('initialization', () => {

27 it('retrieves the artist', fakeAsync(

28 inject([Router, SpotifyService],

29 (router: Router,

30 mockSpotifyService: MockSpotifyService) => {

31 const fixture = createRoot(router, RootCmp);

32

33 router.navigateByUrl('/artists/2');

34 advance(fixture);

35

36 expect(mockSpotifyService.getArtistSpy).toHaveBeenCalledWith('2');

37 })));

38 });

Let’s take it step by step.

fakeAsync and advance

We start by wrapping the test in fakeAsync. Without getting too bogged down in
the details, by using fakeAsync we’re able to have more control over when change
detection and asynchronous operations occur. A consequence of this is that we need
to explicitly tell our components that they need to detect changes after we make
changes in our tests.

Normally you don’t need to worry about this when writing your apps, as zones tend
to do the right thing, but during tests we manipulate the change detection process
more carefully.

If you skip a few lines down you’ll notice that we’re using a function called advance

that comes from our MusicTestHelpers. Let’s take a look at that function:

Testing 597

code/routes/music/src/app/test/test.module.ts

54 export function advance(fixture: ComponentFixture<any>): void {

55 tick();

56 fixture.detectChanges();

57 }

So we see here that advance does two things:

1. It tells the component to detect changes and
2. Calls tick()

When we use fakeAsync, timers are actually synchronous and we use tick() to
simulate the asynchronous passage of time.

Practically speaking, in our tests we’ll call advance whenever we want Angular to
“work it’s magic”. So for instance, whenever we navigate to a new route, update a
form element, make an HTTP request etc. we’ll call advance to give Angular a chance
to do it’s thing.

inject

In our test we need some dependencies. We use inject to get them. The inject

function takes two arguments:

1. An array of tokens to inject
2. A function into which to provide the injections

Andwhat classeswill inject use? The providerswe defined in TestBed.configureTestingModule
providers.

Notice that we’re injecting:

1. Router
2. SpotifyService

Testing 598

The Router that will be injected is the Router we configured in musicTestProviders

above.

For SpotifyService, notice that we’re requesting injection of the token Spotify-

Service, but we’re receiving a MockSpotifyService. A little tricky, but hopefully it
makes sense given what we’ve talked about so far.

Testing ArtistComponent’s Initialization

Let’s review the contents of our actual test:

code/routes/music/src/app/artist/artist.component.spec.ts

31 const fixture = createRoot(router, RootCmp);

32

33 router.navigateByUrl('/artists/2');

34 advance(fixture);

35

36 expect(mockSpotifyService.getArtistSpy).toHaveBeenCalledWith('2');

We start by creating an instance of our RootCmp by using createRoot. Let’s look at
the createRoot helper function:

code/routes/music/src/app/test/test.module.ts

59 export function createRoot(router: Router,

60 componentType: any): ComponentFixture<any> {

61 const f = TestBed.createComponent(componentType);

62 advance(f);

63 (<any>router).initialNavigation();

64 advance(f);

65 return f;

66 }

Notice here that when we call createRoot we

1. Create an instance of the root component
2. advance it
3. Tell the router to setup it’s initialNavigation

Testing 599

4. advance again
5. return the new root component.

This is something we’ll do a lot when we want to test a component that depends on
routing, so it’s handy to have this helper function around.

Notice that we’re using the TestBed library again to call TestBed.createComponent.
This function creates a component of the appropriate type.

RootCmp is an empty component that we created in MusicTestHelpers.
You definitely don’t need to create an empty component for your root
component, but I like to do it this way because it lets us test our child
component (ArtistComponent) more-or-less in isolation. That is, we don’t
have to worry about the effects of the parent app component.

That said, maybe youwant to make sure that the child component operates
correctly in context. In that case instead of using RootCmp you’d probably
want to use your app’s normal parent component.

Next we use router to navigate to the url /artists/2 and advance. When we
navigate to that URL, ArtistComponent should be initialized, so we assert that the
getArtist method of the SpotifyService was called with the proper value.

Testing ArtistComponent Methods

Recall that the ArtistComponent has an href which calls the back() function.

code/routes/music/src/app/artist/artist.component.ts

33 back(): void {

34 this.location.back();

35 }

Let’s test that when the back method is called, the router will redirect the user back
to the previous location.

The current location state is controlled by the Location service. When we need to
send the user back to the previous location, we use the Location’s back method.

Here is how we test the back method:

Testing 600

code/routes/music/src/app/artist/artist.component.spec.ts

40 describe('back', () => {

41 it('returns to the previous location', fakeAsync(

42 inject([Router, Location],

43 (router: Router, location: Location) => {

44 const fixture = createRoot(router, RootCmp);

45 expect(location.path()).toEqual('/');

46

47 router.navigateByUrl('/artists/2');

48 advance(fixture);

49 expect(location.path()).toEqual('/artists/2');

50

51 const artist = fixture.debugElement.children[1].componentInstance;

52 artist.back();

53 advance(fixture);

54

55 expect(location.path()).toEqual('/');

56 })));

57 });

The initial structure is similar: we inject our dependencies and create a new
component.

We have a new expectation - we assert that the location.path() is equal to what
we expect it to be.

We also have another new idea: we’re accessing themethods on the ArtistComponent
itself. We get a reference to our ArtistComponent instance through the line

fixture.debugElement.children[1].componentInstance.

Now that we have the instance of the component, we’re able to call methods on it
directly, like back().

After we call back() we advance and then verify that the location.path() is what
we expected it to be.

Testing ArtistComponent DOM Template Values

The last thing we need to test on ArtistComponent is the template that renders the
artist.

Testing 601

code/routes/music/src/app/artist/artist.component.html

1 <div *ngIf="artist">

2 <h1>{{ artist.name }}</h1>

3

4 <p>

5

6 </p>

7

8 <p><a href (click)="back()">Back</p>

9 </div>

Remember that the instance variable artist is set by the result of the SpotifyService
getArtist call. Since we’re mocking the SpotifyService with MockSpotifyService,
the data we should have in our template should be whatever the mockSpotifyService
returns. Let’s look at how we do this:

code/routes/music/src/app/artist/artist.component.spec.ts

59 describe('renderArtist', () => {

60 it('renders album info', fakeAsync(

61 inject([Router, SpotifyService],

62 (router: Router,

63 mockSpotifyService: MockSpotifyService) => {

64 const fixture = createRoot(router, RootCmp);

65

66 const artist = {name: 'ARTIST NAME', images: [{url: 'IMAGE_1'}]};

67 mockSpotifyService.setResponse(artist);

68

69 router.navigateByUrl('/artists/2');

70 advance(fixture);

71

72 const compiled = fixture.debugElement.nativeElement;

73

74 expect(compiled.querySelector('h1').innerHTML).toContain('ARTIST NAME');

75 expect(compiled.querySelector('img').src).toContain('IMAGE_1');

76 })));

77 });

The first thing that’s new here is that we’re manually setting the response of the
mockSpotifyService with setResponse.

Testing 602

The artist variable is a fixture that represents what we get from the Spotify API
whenwe call the artists endpoint at GET https://api.spotify.com/v1/artists/{id}.

Here’s what the real JSON looks like:

Postman - Spotify Get Artist Endpoint

However, for this test we need only the name and images properties.

When we call the setResponse method, that response will be used for the next call
we make to any of the service methods. In this case, we want the method getArtist

to return this response.

Next we navigate with the router and advance. Now that the view is rendered, we

Testing 603

can use the DOM representation of the component’s view to check if the artist was
properly rendered.

We do that by getting the nativeElement property of the DebugElement with the line
fixture.debugElement.nativeElement.

In our assertions, we expect to see H1 tag containing the artist’s name, in our case
the string ARTIST NAME (because of our artist fixture above).

To check those conditions, we use the NativeElement’s querySelectormethod. This
method will return the first element that matches the provided CSS selector.

For the H1 we check that the text is indeed ARTIST NAME and for the image, we check
its src property is IMAGE 1.

With this, we are done testing the ArtistComponent class.

Testing Forms

To write form tests, let’s use the DemoFormWithEventsComponent component we
created back in the Forms chapter. This example is a good candidate because it uses
a few features of Angular’s forms:

• it uses a FormBuilder
• has validations
• handles events

As a reminder, here’s the full code for that class:

Testing 604

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.ts

1 import { Component, OnInit } from '@angular/core';

2 import {

3 FormBuilder,

4 FormGroup,

5 Validators,

6 AbstractControl

7 } from '@angular/forms';

8

9 @Component({

10 selector: 'app-demo-form-with-events',

11 templateUrl: './demo-form-with-events.component.html',

12 styles: []

13 })

14 export class DemoFormWithEventsComponent implements OnInit {

15 myForm: FormGroup;

16 sku: AbstractControl;

17

18 ngOnInit() {

19 }

20

21 constructor(fb: FormBuilder) {

22 this.myForm = fb.group({

23 'sku': ['', Validators.required]

24 });

25

26 this.sku = this.myForm.controls['sku'];

27

28 this.sku.valueChanges.subscribe(

29 (value: string) => {

30 console.log('sku changed to:', value);

31 }

32);

33

34 this.myForm.valueChanges.subscribe(

35 (form: any) => {

36 console.log('form changed to:', form);

37 }

38);

39

40 }

41

42 onSubmit(form: any): void {

43 console.log('you submitted value:', form.sku);

Testing 605

44 }

45

46 }

And the template:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.html

1 <div class="ui raised segment">

2 <h2 class="ui header">Demo Form: with events</h2>

3 <form [formGroup]="myForm"

4 (ngSubmit)="onSubmit(myForm.value)"

5 class="ui form">

6

7 <div class="field"

8 [class.error]="!sku.valid && sku.touched">

9 <label for="skuInput">SKU</label>

10 <input type="text"

11 class="form-control"

12 id="skuInput"

13 placeholder="SKU"

14 [formControl]="sku">

15 <div *ngIf="!sku.valid"

16 class="ui error message">SKU is invalid</div>

17 <div *ngIf="sku.hasError('required')"

18 class="ui error message">SKU is required</div>

19 </div>

20

21 <div *ngIf="!myForm.valid"

22 class="ui error message">Form is invalid</div>

23

24 <button type="submit" class="ui button">Submit</button>

25 </form>

26 </div>

Just to recap, this code will have the following behavior:

• when no value is present for the SKU field, two validation error will be
displayed: SKU is invalid and SKU is required

• when the value of the SKU field changes, we are logging a message to the
console

Testing 606

• when the form changes, we are also logging to the console
• when the form is submitted, we log yet another final message to the console

It seems that one obvious external dependency we have is the console. As we learned
before, we need to somehow mock all external dependencies.

Creating a ConsoleSpy

This time, instead of using a SpyObject to create a mock, let’s do something simpler,
since all we’re using from the console is the log method.

We will replace the original console instance, that is held on the window.console

object and replace by an object we control: a ConsoleSpy.

code/forms/src/app/utils.ts

14 export class ConsoleSpy {

15 public logs: string[] = [];

16 log(...args) {

17 this.logs.push(args.join(' '));

18 }

19 warn(...args) {

20 this.log(...args);

21 }

22 }

The ConsoleSpy is an object that will take whatever is logged, naively convert it to
a string, and store it in an internal list of things that were logged.

Testing 607

To accept a variable number of arguments on our version of the
console.log method, we are using ES6 and TypeScript’s Rest parame-
ters¹³⁸.

This operator, represented by an ellipsis, like ...theArgs as our function
argument. In a nutshell using it indicates that we’re going to capture all the
remaining arguments from that point on. If we had something like (a, b,

...theArgs) and called func(1, 2, 3, 4, 5), a would be 1, b would be 2
and theArgs would have [3, 4, 5].

You can play with it yourself if you have a recent version of Node.js¹³⁹
installed:

$ node –harmony > var test = (a, b, …theArgs) ⇒ con-
sole.log(‘a=’,a,’b=’,b,’theArgs=’,theArgs); undefined > test(1,2,3,4,5); a=
1 b= 2 theArgs= [3, 4, 5]

So instead of writing it to the console itself, we’ll be storing them on an array. If the
code under test calls console.log three times:

console.log("First message", "is", 123);

console.log("Second message");

console.log("Third message");

We expect the _logs field to have an array of ['First message is 123', 'Second

message', 'Third message'].

Installing the ConsoleSpy

To use our spy in our test we start by declaring two variables: originalConsole will
keep a reference to the original console instance, and fakeConsole that will hold the
mocked version of the console. We also declare a few variables that will be helpful
in testing our input and form elements.

¹³⁸https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
¹³⁹https://nodejs.org/en/

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://nodejs.org/en/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://nodejs.org/en/

Testing 608

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

20 describe('DemoFormWithEventsComponent', () => {

21 let component: DemoFormWithEventsComponent;

22 let fixture: ComponentFixture<DemoFormWithEventsComponent>;

23

24 let originalConsole, fakeConsole;

25 let el, input, form;

And then we can install the fake console and specify our providers:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

27 beforeEach(async(() => {

28 // replace the real window.console with our spy

29 fakeConsole = new ConsoleSpy();

30 originalConsole = window.console;

31 (<any>window).console = fakeConsole;

32

33 TestBed.configureTestingModule({

34 imports: [FormsModule, ReactiveFormsModule],

35 declarations: [DemoFormWithEventsComponent]

36 })

37 .compileComponents();

38 }));

Back to the testing code, the next thing we need to do is replace the real console
instance with ours, saving the original instance.

Finally, on the afterAll method, we restore the original console instance to make
sure it doesn’t leak into other tests.

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

49 // restores the real console

50 afterAll(() => (<any>window).console = originalConsole);

Configuring the Testing Module

Notice that in the beforeEachwe call TestBed.configureTestingModule - remember
that configureTestingModule sets up the root NgModule for our tests.

Testing 609

In this case we’re importing the two forms modules and declaring the DemoFormWith-
Events component.

Now that we have control of the console, let’s begin testing our form.

Testing The Form

Now we need to test the validation errors and the events of the form.

The first thing we need to do is to get the references to the SKU input field and to
the form elements:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

43 it('validates and triggers events', fakeAsync(() => {

44 fixture = TestBed.createComponent(DemoFormWithEventsComponent);

45 component = fixture.componentInstance;

46 el = fixture.debugElement.nativeElement;

47 input = fixture.debugElement.query(By.css('input')).nativeElement;

48 form = fixture.debugElement.query(By.css('form')).nativeElement;

49 fixture.detectChanges();

The last line tells Angular to commit all the pending changes, similar to what we
did in the routing section above. Next, we will set the SKU input value to the empty
string:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

51 input.value = '';

52 dispatchEvent(input, 'input');

53 fixture.detectChanges();

54 tick();

Here we use dispatchEvent to notify Angular that the input element changed, and
then we trigger the change detection a second time. Finally we use tick() to make
sure all asynchronous code triggered up to this point gets executed.

The reason we are using fakeAsync and tick on this test, is to assure the form events
are triggered. If we used async and inject instead, we would finish the code before
the events were triggered.

Testing 610

Now that we have changed the input value, let’s make sure the validation is working.
We ask the component element (using the el variable) for all child elements that are
error messages and then making sure we have both error messages displayed:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

57 let msgs = el.querySelectorAll('.ui.error.message');

58 expect(msgs[0].innerHTML).toContain('SKU is invalid');

59 expect(msgs[1].innerHTML).toContain('SKU is required');

Next, we will do something similar, but this time we set a value to the SKU field:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

62 input.value = 'XYZ';

63 dispatchEvent(input, 'input');

64 fixture.detectChanges();

65 tick();

And make sure all the error messages are gone:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

67 msgs = el.querySelectorAll('.ui.error.message');

68 expect(msgs.length).toEqual(0);

Finally, we will trigger the submit event of the form:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

70 fixture.detectChanges();

71 dispatchEvent(form, 'submit');

72 tick();

And finally we make sure the event was kicked by checking that the message we log
to the console when the form is submitted is there:

Testing 611

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.1.spec.ts

74 // checks for the form submitted message

75 expect(fakeConsole.logs).toContain('you submitted value: XYZ');

We could continue and add new verifications for the other two events our form
triggers: the SKU change and the form change events. However, our test is growing
quite long.

When we run our tests, we see it passes:

DemoFormWithEvents test output

This test works, but stylistically we have some code smells:

• a really long it condition (more than 5-10 lines)
• more than one or two expects per it condition
• the word and on the test description

Refactoring Our Form Test

Let’s fix that by first extracting the code that creates the component and gets the
component element and also the elements for the input and for the form:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

41 fixture = TestBed.createComponent(DemoFormWithEventsComponent);

The createComponent code is pretty straightforward: Creates the component with

TestBed.createComponent, retrieves all the elementswe need and calls detectChanges.

Now the first thing we want to test is that given an empty SKU field, we should see
two error messages:

Testing 612

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

52 it('displays errors with no sku', fakeAsync(() => {

53 input.value = '';

54 dispatchEvent(input, 'input');

55 fixture.detectChanges();

56

57 // no value on sku field, all error messages are displayed

58 const msgs = el.querySelectorAll('.ui.error.message');

59 expect(msgs[0].innerHTML).toContain('SKU is invalid');

60 expect(msgs[1].innerHTML).toContain('SKU is required');

61 }));

See how much cleaner this is? Our test is focused and tests only one thing. Great job!

This new structure makes adding the second test easy. This time we want to test that,
once we add a value to the SKU field, the error messages are gone:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

63 it('displays no errors when sku has a value', fakeAsync(() => {

64 input.value = 'XYZ';

65 dispatchEvent(input, 'input');

66 fixture.detectChanges();

67

68 const msgs = el.querySelectorAll('.ui.error.message');

69 expect(msgs.length).toEqual(0);

70 }));

One thing you may have noticed is that so far, our tests are not using fakeAsync, but
async plus inject instead.

That’s another bonus of this refactoring: we will only use fakeAsync and tick()

when we want to check if something was added to the console, because that’s all our
form’s event handlers do.

The next test will do exactly that - when the SKU value changes, we should have a
message logged to the console:

Testing 613

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

72 it('handles sku value changes', fakeAsync(() => {

73 input.value = 'XYZ';

74 dispatchEvent(input, 'input');

75 tick();

76

77 expect(fakeConsole.logs).toContain('sku changed to: XYZ');

78 }));

We can write similar code for both the form change…

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

80 it('handles form changes', fakeAsync(() => {

81 input.value = 'XYZ';

82 dispatchEvent(input, 'input');

83 tick();

84

85 expect(fakeConsole.logs).toContain('form changed to: [object Object]');

86 }));

… and the form submission events:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.spec.ts

88 it('handles form submission', fakeAsync((tcb) => {

89 input.value = 'ABC';

90 dispatchEvent(input, 'input');

91 tick();

92

93 fixture.detectChanges();

94 dispatchEvent(form, 'submit');

95 tick();

96

97 expect(fakeConsole.logs).toContain('you submitted value: ABC');

98 }));

When we run the tests now, we get a much nicer output:

Testing 614

DemoFormWithEvents test output after refactoring

Another great benefit from this refactor can be seen when something goes wrong.
Let’s go back to the component code and change the message when the form gets
submitted, in order to force one of our tests to fail:

onSubmit(form: any): void {

console.log('you have submitted the value:', form.sku);

}

If we ran the previous version of the test, here’s what would happen:

DemoFormWithEvents error output before refactoring

It’s not immediately obvious what failed. We have to read the error code to realize
it was the submission message that failed. We also can’t be sure if that was the only
thing that broke on the component code, since we may have other test conditions
after the one that failed that never had a chance to be executed.

Now, compare that to the error we get from our refactored code:

Testing 615

DemoFormWithEvents error output after refactoring

This version makes it pretty obvious that the only thing that failed was the form
submission event.

Testing HTTP requests

We could test the HTTP interaction in our apps using the same strategy as we used
so far: write a mock version of the HttpClient or HttpClient class, since it is an
external dependency.

But since the vast majority of single page appswritten using frameworks like Angular
use HTTP interaction to talk to APIs, the Angular testing library already provides a
built in alternative: HttpTestingController.

Let’s dive a little deeper now and see some more testing scenarios and also some
good practices. In order to do this, let’s write tests for the examples from the HTTP
chapter.

First, let’s see how we test different HTTP methods, like POST or DELETE and how
to test the correct HTTP headers are being sent.

Back on the HTTP chapter, we created this example that covered how to do those
things using HttpClient.

Testing a POST

The first test we’ll write is to make sure we’re doing a proper POST request on the
makePost method:

Testing 616

code/http/src/app/more-http-requests/more-http-requests.component.ts

20 makePost(): void {

21 this.loading = true;

22 this.http

23 .post(

24 'https://jsonplaceholder.typicode.com/posts',

25 JSON.stringify({

26 body: 'bar',

27 title: 'foo',

28 userId: 1

29 })

30)

31 .subscribe(data => {

32 this.data = data;

33 this.loading = false;

34 });

35 }

When writing our test for this method, our goal is to test two things:

1. the request method (POST) is correct and that
2. the URL we’re hitting is also correct.

Here’s how we turn that into a test:

First, we’ll need to setup our tests to use the HttpClientTestingModule and HttpTest-
ingController:

code/src/app/more-http-requests/more-http-requests.component.spec.ts

1 import {

2 async,

3 inject,

4 ComponentFixture,

5 TestBed

6 } from '@angular/core/testing';

7

8 import { HttpClient, HttpRequest, HttpHeaders } from '@angular/common/http';

9 import {

10 HttpTestingController,

11 HttpClientTestingModule

Testing 617

12 } from '@angular/common/http/testing';

13

14 import { MoreHttpRequestsComponent } from './more-http-requests.component';

15

16 describe('MoreHttpRequestsComponent', () => {

17 let component: MoreHttpRequestsComponent;

18 let fixture: ComponentFixture<MoreHttpRequestsComponent>;

19 let httpMock: HttpTestingController;

20

21 beforeEach(

22 async(() => {

23 TestBed.configureTestingModule({

24 declarations: [MoreHttpRequestsComponent],

25 imports: [HttpClientTestingModule]

26 });

27 })

28);

29

30 beforeEach(

31 async(

32 inject([HttpTestingController], _httpMock => {

33 fixture = TestBed.createComponent(MoreHttpRequestsComponent);

34 component = fixture.componentInstance;

35 fixture.detectChanges();

36 httpMock = _httpMock;

37 })

38)

39);

40

41 afterEach(

42 inject([HttpTestingController], (httpMock: HttpTestingController) => {

43 httpMock.verify();

44 })

45);

Above, we configure our testing module to import the HttpClientTestingModule.
Then we inject HttpTestingController and store it as a variable in httpMock.

Now we’re ready to write our test:

Testing 618

code/src/app/more-http-requests/more-http-requests.component.spec.ts

47 it(

48 'performs a POST',

49 async(() => {

50 component.makePost();

51

52 const req = httpMock.expectOne(

53 'https://jsonplaceholder.typicode.com/posts'

54);

55 expect(req.request.method).toEqual('POST');

56 req.flush({ response: 'OK' });

57 expect(component.data).toEqual({ response: 'OK' });

58

59 httpMock.verify();

60 })

61);

We start by call the makePost() function directly on the component. This might look
odd because we don’t typically call functions directly on our components. But what
we’re trying to do here is cause the HTTP request to be made, that way we can test
expectations on it.

Next we use the instance variable httpMock and expect that one request was made
to jsonplaceholder by using the expectOne function.

The line req.flush will send a “mock” response to that HTTP request, and then we
expect that the component.data matches that response.

Lastly, we call httpMock.verify() to finalize any remaining expectations.

Now that we understand how this works, adding a second test for DELETE method
is straightforward.

Testing DELETE

Here’s how the makeDelete method is implemented:

Testing 619

code/http/src/app/more-http-requests/more-http-requests.component.ts

37 makeDelete(): void {

38 this.loading = true;

39 this.http

40 .delete('https://jsonplaceholder.typicode.com/posts/1')

41 .subscribe(data => {

42 this.data = data;

43 this.loading = false;

44 });

45 }

And this is the code we use to test it:

src/app/more-http-requests/more-http-requests.component.spec.ts

63 it(

64 'performs a DELETE',

65 async(() => {

66 component.makeDelete();

67

68 const req = httpMock.expectOne(

69 'https://jsonplaceholder.typicode.com/posts/1'

70);

71

72 expect(req.request.method).toEqual('DELETE');

73 req.flush({ response: 'OK' });

74 expect(component.data).toEqual({ response: 'OK' });

75

76 httpMock.verify();

77 })

78);

Everything here is the same, except for the URL that changes a bit and the HTTP
method, which is now RequestMethod.Delete.

Testing HTTP Headers

The last method we have to test on this class is makeHeaders:

Testing 620

code/http/src/app/more-http-requests/more-http-requests.component.ts

47 makeHeaders(): void {

48 const headers: HttpHeaders = new HttpHeaders({

49 'X-API-TOKEN': 'ng-book'

50 });

51

52 const req = new HttpRequest(

53 'GET',

54 'https://jsonplaceholder.typicode.com/posts/1',

55 {

56 headers: headers

57 }

58);

59

60 this.http.request(req).subscribe(data => {

61 this.data = data['body'];

62 });

63 }

In this case, what our test should focus on is making sure the header X-API-TOKEN is
being properly set to ng-book:

src/app/more-http-requests/more-http-requests.component.spec.ts

80 it(

81 'sends correct headers',

82 async(() => {

83 component.makeHeaders();

84

85 const req = httpMock.expectOne(

86 req =>

87 req.headers.has('X-API-TOKEN') &&

88 req.headers.get('X-API-TOKEN') == 'ng-book'

89);

90

91 req.flush({ response: 'OK' });

92 expect(component.data).toEqual({ response: 'OK' });

93

94 httpMock.verify();

95 })

96);

Testing 621

The req.headers attribute returns the headers and we’re using two methods to
perform two different assertions:

• the has method to check whether a given header was set, ignoring it’s value
• the get method, that returns the value that was set

If having the header set is sufficient, use has. Otherwise, if you need to inspect the
set value, use get.

Now let’s move to a more complex example.

Testing YouTubeSearchService

Back in the HTTP chapter we also built a YouTube video search. The HTTP
interaction for that example takes place on a service called YouTubeSearchService:

code/http/src/app/you-tube-search/you-tube-search.service.ts

26 /**

27 * YouTubeService connects to the YouTube API

28 * See: * https://developers.google.com/youtube/v3/docs/search/list

29 */

30 @Injectable()

31 export class YouTubeSearchService {

32 constructor(

33 private http: HttpClient,

34 @Inject(YOUTUBE_API_KEY) private apiKey: string,

35 @Inject(YOUTUBE_API_URL) private apiUrl: string

36) {}

37

38 search(query: string): Observable<SearchResult[]> {

39 const params: string = [

40 `q=${query}`,

41 `key=${this.apiKey}`,

42 `part=snippet`,

43 `type=video`,

44 `maxResults=10`

45].join('&');

46 const queryUrl = `${this.apiUrl}?${params}`;

47 return this.http.get(queryUrl).map(response => {

48 return <any>response['items'].map(item => {

Testing 622

49 // console.log("raw item", item); // uncomment if you want to debug

50 return new SearchResult({

51 id: item.id.videoId,

52 title: item.snippet.title,

53 description: item.snippet.description,

54 thumbnailUrl: item.snippet.thumbnails.high.url

55 });

56 });

57 });

58 }

59 }

It uses the YouTube API to search for videos and parse the results into a SearchResult
instance:

code/http/src/app/you-tube-search/search-result.model.ts
5 export class SearchResult {

6 id: string;

7 title: string;

8 description: string;

9 thumbnailUrl: string;

10 videoUrl: string;

11

12 constructor(obj?: any) {

13 this.id = obj && obj.id || null;

14 this.title = obj && obj.title || null;

15 this.description = obj && obj.description || null;

16 this.thumbnailUrl = obj && obj.thumbnailUrl || null;

17 this.videoUrl = obj && obj.videoUrl ||

18 `https://www.youtube.com/watch?v=${this.id}`;

19 }

20 }

The important aspects of this service we need to test are that:

• given a JSON response, the service is able to parse the video id, title, description
and thumbnail

• the URL we are requesting uses the provided search term
• the URL starts with what is set on the YOUTUBE_API_URL constant
• the API key used matches the YOUTUBE_API_KEY constant

With that in mind, let’s start writing our test:

Testing 623

code/http/src/app/you-tube-search/you-tube-search.component.before.spec.ts

25 describe('YouTubeSearchComponent (before)', () => {

26 let component: YouTubeSearchComponent;

27 let fixture: ComponentFixture<YouTubeSearchComponent>;

28

29 beforeEach(

30 async(() => {

31 TestBed.configureTestingModule({

32 declarations: [

33 YouTubeSearchComponent,

34 SearchResultComponent,

35 SearchBoxComponent

36],

37 imports: [HttpClientTestingModule],

38 providers: [

39 YouTubeSearchService,

40 { provide: YOUTUBE_API_KEY, useValue: 'YOUTUBE_API_KEY' },

41 { provide: YOUTUBE_API_URL, useValue: 'YOUTUBE_API_URL' }

42]

43 });

44 })

45);

As we did for every test we wrote on this chapter, we start by declaring howwe want
to setup our dependencies: we’re using the real YouTubeSearchService instance, but
setting fake values for YOUTUBE_API_KEY and YOUTUBE_API_URL constants. We’re also
importing the HttpClientTestingModule.

Now, let’s begin to write our first test case:

code/http/src/app/you-tube-search/you-tube-search.component.before.spec.ts

53 describe('search', () => {

54 it(

55 'parses YouTube response',

56 inject(

57 [YouTubeSearchService, HttpTestingController],

58 fakeAsync((service, httpMock) => {

59 let res;

60

61 service.search('hey').subscribe(_res => {

62 res = _res;

63 });

Testing 624

64

65 const req = httpMock.expectOne({ method: 'GET' });

66 req.flush({

67 items: [

68 {

69 id: { videoId: 'VIDEO_ID' },

70 snippet: {

71 title: 'TITLE',

72 description: 'DESCRIPTION',

73 thumbnails: {

74 high: { url: 'THUMBNAIL_URL' }

75 }

76 }

77 }

78]

79 });

80

81 tick();

82

83 const video = res[0];

84 expect(video.id).toEqual('VIDEO_ID');

85 expect(video.title).toEqual('TITLE');

86 expect(video.description).toEqual('DESCRIPTION');

87 expect(video.thumbnailUrl).toEqual('THUMBNAIL_URL');

88

89 httpMock.verify();

90 })

91)

92);

93 });

Here we’re calling the method we’re testing: search. We’re calling it with the term
hey and capturing the response on the res variable.

Here we are telling HttpClient to return a fake response that will match the relevant
fields what we expect the YouTube API to respond when we call the real URL. We
do that by using the req.flush method of the connection.

Testing 625

code/http/src/app/you-tube-search/you-tube-search.component.before.spec.ts

66 req.flush({

67 items: [

68 {

69 id: { videoId: 'VIDEO_ID' },

70 snippet: {

71 title: 'TITLE',

72 description: 'DESCRIPTION',

73 thumbnails: {

74 high: { url: 'THUMBNAIL_URL' }

75 }

76 }

77 }

78]

79 });

If you noticed before, we’re using fakeAsync that requires us to manually sync
asynchronous code by calling tick(). When we do that here, we expect that the
search finished executing and our res variable to have a value.

Now is the time to evaluate that value:

code/http/src/app/you-tube-search/you-tube-search.component.before.spec.ts

83 const video = res[0];

84 expect(video.id).toEqual('VIDEO_ID');

85 expect(video.title).toEqual('TITLE');

86 expect(video.description).toEqual('DESCRIPTION');

87 expect(video.thumbnailUrl).toEqual('THUMBNAIL_URL');

We are getting the first element from the list of responses. We know it’s a SearchRe-
sult, so we’re now checking that each attribute was set correctly, based on our
provided response: the id, title, description and thumbnail URL should all match.

With this, we completed our first goal when writing this test. However, didn’t we
just say that having a huge itmethod and having too many expects are testing code
smells?

We did, so before we continue let’s refactor this code to make isolated assertions
easier.

Add the following helper function inside our describe('search', ...):

Testing 626

code/http/src/app/you-tube-search/you-tube-search.component.spec.ts

81 function search(term: string, response: any, callback) {

82 return inject(

83 [YouTubeSearchService, HttpTestingController],

84 fakeAsync((service, httpMock) => {

85 let res;

86

87 // search

88 service.search(term).subscribe(_res => {

89 res = _res;

90 });

91

92 const req = httpMock.expectOne({ method: 'GET' });

93 req.flush(response);

94 tick();

95

96 callback(req.request, res);

97 })

98);

99 }

Let’s see what this function does: it uses inject and fakeAsync to perform the same
thing we were doing before, but in a configurable way. We take a search term, a
response and a callback function. We use those parameters to call the searchmethod
with the search term, set the fake response and call the callback function after the
request is finished, providing the request and the response objects.

This way, all our test need to do is call the function and check one of the objects.

Let’s break the test we had before into four tests, each testing one specific aspect of
the response:

Testing 627

code/http/src/app/you-tube-search/you-tube-search.component.spec.ts

101 it(

102 'parses YouTube video id',

103 search('hey', defaultResponse, (req, res) => {

104 const video = res[0];

105 expect(video.id).toEqual('VIDEO_ID');

106 })

107);

108

109 it(

110 'parses YouTube video title',

111 search('hey', defaultResponse, (req, res) => {

112 const video = res[0];

113 expect(video.title).toEqual('TITLE');

114 })

115);

116

117 it(

118 'parses YouTube video description',

119 search('hey', defaultResponse, (req, res) => {

120 const video = res[0];

121 expect(video.description).toEqual('DESCRIPTION');

122 })

123);

124

125 it(

126 'parses YouTube video thumbnail',

127 search('hey', defaultResponse, (req, res) => {

128 const video = res[0];

129 expect(video.description).toEqual('DESCRIPTION');

130 })

131);

Doesn’t it look good? Small, focused tests that test only one thing. Great!

Now it should be really easy to add tests for the remaining goals we had:

Testing 628

code/http/src/app/you-tube-search/you-tube-search.component.spec.ts

133 it(

134 'sends the query',

135 search('term', defaultResponse, (req, res) => {

136 expect(req.url).toContain('q=term');

137 })

138);

139

140 it(

141 'sends the API key',

142 search('term', defaultResponse, (req, res) => {

143 expect(req.url).toContain('key=YOUTUBE_API_KEY');

144 })

145);

146

147 it(

148 'uses the provided YouTube URL',

149 search('term', defaultResponse, (req, res) => {

150 expect(req.url).toMatch(/^YOUTUBE_API_URL\?/);

151 })

152);

Feel free to add more tests as you see fit. For example, you could add a test for when
you have more than one item on the response, with different attributes. See if you
can find other aspects of the code you’d like to test.

Conclusion

The Angular team has done a great job building testing right into Angular. It’s easy
to test all of the aspects of our application: from controllers, to services, forms and
HTTP. Even testing asynchronous code that was a difficult to test is now a breeze.

Converting an AngularJS 1.x App
to Angular
If you’ve been using Angular for a while, then you probably already have production
AngularJS 1 apps. Angular is great, but there’s no way we can drop everything
and rewrite our entire production apps in Angular. What we need is a way to
incrementally upgrade our AngularJS 1 app. Thankfully, Angular has a fantastic way
to do that.

The interoperability of AngularJS 1 (ng1) and Angular (ng2) works really well. In this
chapter, we’re going to talk about how to upgrade your ng1 app to ng2 by writing
a hybrid app. A hybrid app is running ng1 and ng2 simultaneously (and we can
exchange data between them).

Peripheral Concepts

When we talk about interoperability between AngularJS 1 and Angular, there’s a lot
of peripheral concepts. For instance:

Mapping AngularJS 1 Concepts to Angular: At a high level, ng2 Components are
ng1 directives. We also use Services in both. However, this chapter is about using
both ng1 and ng2, so we’re going to assume you have basic knowledge of both. If
you haven’t used ng2 much, checkout the chapter on How Angular Works before
reading this chapter.

Preparing ng1 apps for ng2: AngularJS 1.5 provides a new .component method to
make “component-directives”. .component is a great way to start preparing your ng1
app for ng2. Furthermore, creating thin controllers (or banning them altogether¹⁴⁰) is
a great way to refactor your ng1 app such that it’s easier to integrate with ng2.

Another way to prepare your ng1 app is to reduce or eliminate your use of two-way
data-binding in favor of a one-way data flow. In-part, you’d do this by reducing

¹⁴⁰http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html

http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html
http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html

Converting an AngularJS 1.x App to Angular 630

$scope changes that pass data between directives and instead use services to pass
your data around.

These ideas are important andwarrant further exploration. However, we’re not going
to extensively cover best-practices for pre-upgrade refactoring in this chapter.

Instead, here’s what we are going to talk about:

Writing hybrid ng1/ng2 apps: ng2 provides a way to bootstrap your ng1 app and
thenwrite ng2 components and services. You canwrite ng2 components that will mix
with ng1 components and it “just works”. Furthermore, the dependency injection
system supports passing between ng1 and ng2 (both directions), so you can write
services which will run in either ng1 or ng2.

The best part? Change detection runs within Zones, so you don’t need to call
$scope.apply or worry much about change-detection at all.

What We’re Building

In this chapter, we’re going to be converting an app called “Interest” - it’s a Pinterest-
like clone. The idea is that you can save a “Pin” which is a link with an image. The
Pins will be shown in a list and you can “fav” (or unfav) a pin.

Converting an AngularJS 1.x App to Angular 631

Our completed Pinterest-like app

You can find the completed code for both the ng1 version and the completed
hybrid version in the sample code download under code/upgrade/ng1 and
code/conversion/hybrid

The hybrid app is written using Angular CLI. In order to run it, change into
the directory and type:

1 npm install

2 npm start

Before we dive in, let’s set the stage for interoperability between ng1 and ng2

Converting an AngularJS 1.x App to Angular 632

Mapping AngularJS 1 to Angular

From a high level, the five main parts of AngularJS 1 are:

• Directives
• Controllers
• Scopes
• Services
• Dependency Injection

Angular changes this list significantly. You might have heard that at ngEurope 2014
Igor and Tobias from the Angular core team announced that they were killing off
several “core” ideas in AngularJS 1 (video here¹⁴¹). Specifically, they announced that
Angular was killing off:

• $scope (& two-way binding by default)
• Directive Definition Objects
• Controllers
• angular.module

¹⁴¹https://www.youtube.com/watch?v=gNmWybAyBHI

https://www.youtube.com/watch?v=gNmWybAyBHI
https://www.youtube.com/watch?v=gNmWybAyBHI

Converting an AngularJS 1.x App to Angular 633

Igor and Tobias killing off many APIs from 1.x. at ngEurope 2014. Photo Credit: Michael Bromley
(used with permission)

As someone who’s built AngularJS 1 apps and is used to thinking in ng1, we might
ask: if we take those things away, what is left? How can you build Angular apps
without Controllers and $scope?

Well, as much as people like to dramatize how different Angular is, it turns out, a
lot of the same ideas are still with us and, in fact, Angular provides just as much
functionality but with a much simpler model.

At a high-level Angular core is made up of:

• Components (think “directives”) and
• Services

Of course there’s tons of infrastructure required to make those things work. For

Converting an AngularJS 1.x App to Angular 634

instance, you need Dependency Injection to manage your Services. And you need
a strong change detection library to efficiently propagate data changes to your app.
And you need an efficient rendering layer to handle rendering the DOM at the right
time.

Requirements for Interoperability

So given these two different systems, what features do we need for easy interoper-
ability?

• Use Angular Components in AngularJS 1: The first thing that comes to mind
is that we need to be able to write new ng2 components, but use them within
our ng1 app.

• Use AngularJS 1 Components in Angular: It’s likely that we won’t replace a
whole branch of our component-tree with all ng2 components. We want to be
able to re-use any ng1 components we have within a ng2 component.

• Service Sharing: If we have, say, a UserService we want to share that service
between both ng1 and ng2. Services are normally plain JavaScript objects
so, more generally, what we need is an interoperable dependency injection
system.

• Change Detection: If we make changes in one side, we want those changes to
propagate to the other.

Angular provides solutions for all of these situations and we’ll cover them in this
chapter.

In this chapter we’re going to do the following:

• Describe the ng1 app we’ll be converting
• Explain how to setup your hybrid app by using ng2’s UpgradeAdapter
• Explain step-by-step how to share components (directives) and services be-
tween ng1 and ng2 by converting the ng1 app to a hybrid app

Converting an AngularJS 1.x App to Angular 635

The AngularJS 1 App

To set the stage, let’s go over the AngularJS 1 version of our app.

This chapter assumes some knowledge of AngularJS 1 and ui-router¹⁴². If
you’re not comfortable with AngularJS 1 yet, check out ng-book 1¹⁴³.

We won’t be diving too deeply into explaining each AngularJS 1 concept.
Instead, we’re going to review the structure of the app to prepare for our
upgrade to a ng2/hybrid app.

To run the ng1 app, cd into conversion/ng1 in the code samples, install the
dependencies, and run the app.

cd code/upgrade/ng1 # change directories

npm install # install dependencies

npm run go # run the app

If your browser doesn’t open automatically, open the url: http://localhost:8080¹⁴⁴.

Note that the AngularJS 1 app in ng1 will run on port 8080 whereas the
hybrid app (discussed below) will run on port 4200.

In this app, you can see that our user is collecting puppets. We can hover over an
item and click the heart to “fav” a pin.

¹⁴²https://github.com/angular-ui/ui-router
¹⁴³http://ng-book.com
¹⁴⁴http://localhost:8080

https://github.com/angular-ui/ui-router
http://ng-book.com/
http://localhost:8080/
https://github.com/angular-ui/ui-router
http://ng-book.com/
http://localhost:8080/

Converting an AngularJS 1.x App to Angular 636

Red heart indicates a faved pin

We can also go to the /add page and add a new pin. Try submitting the default form.

Handling image uploads is more complex than we want to handle in this
demo. For now, just paste the full URL to an image if you want to try a
different image.

The ng1-app HTML

The index.html in our ng1 app uses a common structure:

Converting an AngularJS 1.x App to Angular 637

code/upgrade/ng1/index.html
1 <!DOCTYPE html>

2 <html ng-app='interestApp'>

3 <head>

4 <meta charset="utf-8">

5 <title>Interest</title>

6 <link rel="stylesheet" href="css/bootstrap.min.css">

7 <link rel="stylesheet" href="css/sf.css">

8 <link rel="stylesheet" href="css/interest.css">

9 </head>

10 <body class="container-fullwidth">

11

12 <div class="page-header">

13 <div class="container">

14 <h1>Interest <small>what you're interested in</small></h1>

15

16 <div class="navLinks">

17 <a ui-sref='home' id="navLinkHome">Home

18 <a ui-sref='add' id="navLinkAdd">Add

19 </div>

20 </div>

21 </div>

22

23 <div id="content">

24 <div ui-view=''></div>

25 </div>

26

27 <script src="js/vendor/lodash.js"></script>

28 <script src="js/vendor/angular.js"></script>

29 <script src="js/vendor/angular-ui-router.js"></script>

30 <script src="js/app.js"></script>

31 </body>

32 </html>

Looking at the code above:

• Notice that we’re using ng-app in the html tag to specify that this app uses the
module interestApp.

• We load our javascript with script tags at the bottom of the body.
• The template contains a page-header which stores our navigation
• We’re using ui-router which means we:

– Use ui-sref for our links (Home and Add) and
– We use ui-view where we want the router to populate our content.

Converting an AngularJS 1.x App to Angular 638

Code Overview

We’ll look at each section in code, but first, let’s briefly describe the moving parts.

In our app, we have two routes:

• / uses the HomeController
• /add uses the AddController

We use a PinsService to hold an array of all of the current pins. HomeController
renders the list of pins and AddController adds a new element to that list.

Our root-level route uses our HomeController to render pins. We have a pin directive
that renders each pin.

The PinsService stores the data in our app, so let’s look at the PinsService first.

ng1: PinsService

code/upgrade/ng1/js/app.js

1 angular.module('interestApp', ['ui.router'])

2 .service('PinsService', function($http, $q) {

3 this._pins = null;

4

5 this.pins = function() {

6 var self = this;

7 if(self._pins == null) {

8 // initialize with sample data

9 return $http.get("/js/data/sample-data.json").then(

10 function(response) {

11 self._pins = response.data;

12 return self._pins;

13 })

14 } else {

15 return $q.when(self._pins);

16 }

17 }

18

19 this.addPin = function(newPin) {

20 // adding would normally be an API request so lets mock async

Converting an AngularJS 1.x App to Angular 639

21 return $q.when(

22 this._pins.unshift(newPin)

23);

24 }

25 })

The PinsService is a .service that stores an array of pins in the property _.pins.

The method .pins returns a promise that resolves to the list of pins. If _.pins is null
(i.e. the first time), then we will load sample data from /js/data/sample-data.json.

code/upgrade/ng1/js/data/sample-data.json

1 [

2 {

3 "title": "sock puppets",

4 "description": "from:\nThe FunCraft Book of Puppets\n1976\nISBN: 0-590-11936-2",

5 "user_name": "tofutti break",

6 "avatar_src": "images/avatars/42826303@N00.jpg",

7 "src": "images/pins/106033588_167d811702_o.jpg",

8 "url": "https://www.flickr.com/photos/tofuttibreak/106033588/",

9 "faved": false,

10 "id": "106033588"

11 },

12 {

13 "title": "Puppet play.",

14 "description": "My wife's handmade.",

15 "user_name": "MIKI Yoshihito (´�ω�)",

16 "avatar_src": "images/avatars/7940758@N07.jpg",

17 "src": "images/pins/4422575066_7d5c4c41e7_o.jpg",

18 "url": "https://www.flickr.com/photos/mujitra/4422575066/",

19 "faved": false,

20 "id": "4422575066"

21 },

22 {

23 "title": "easy to make puppets - oliver owl (detail)",

24 "description": "from easy to make puppets by joyce luckin (1975)",

25 "user_name": "gilliflower",

26 "avatar_src": "images/avatars/26265986@N00.jpg",

27 "src": "images/pins/6819859061_25d05ef2e1_o.jpg",

28 "url": "https://www.flickr.com/photos/gilliflower/6819859061/",

29 "faved": false,

30 "id": "6819859061"

31 },

Converting an AngularJS 1.x App to Angular 640

Snippet from Sample Data

The method .addPin simply adds the new pin to the array of pins. We use $q.when
here to return a promise, which is likely what would happen if we were doing a real
async call to a server.

ng1: Configuring Routes

We’re going to configure our routes with ui-router.

If you’re unfamiliar with ui-router you can read the docs here¹⁴⁵.

As we mentioned, we’re going to have two routes:

code/upgrade/ng1/js/app.js

26 .config(function($stateProvider, $urlRouterProvider) {

27 $stateProvider

28 .state('home', {

29 templateUrl: '/templates/home.html',

30 controller: 'HomeController as ctrl',

31 url: '/',

32 resolve: {

33 'pins': function(PinsService) {

34 return PinsService.pins();

35 }

36 }

37 })

38 .state('add', {

39 templateUrl: '/templates/add.html',

40 controller: 'AddController as ctrl',

41 url: '/add',

42 resolve: {

43 'pins': function(PinsService) {

44 return PinsService.pins();

45 }

46 }

47 })

¹⁴⁵https://github.com/angular-ui/ui-router/wiki

https://github.com/angular-ui/ui-router/wiki
https://github.com/angular-ui/ui-router/wiki

Converting an AngularJS 1.x App to Angular 641

48

49 $urlRouterProvider.when('', '/') ;

50 })

The first route /maps to the HomeController. It has a template, which we’ll look at in
a minute. Notice that we also are using the resolve functionality of ui-router. This
says that before we load this route for the user, we want to call PinsService.pins()
and inject the result (the list of pins) into the controller (HomeController).

The /add route as similarly, except that it has a different template and a different
controller.

Let’s first look at our HomeController.

ng1: HomeController

Our HomeController is straightforward. We save pins, which is injected because of
our resolve, to $scope.pins.

code/upgrade/ng1/js/app.js

60 .controller('HomeController', function(pins) {

61 this.pins = pins;

62 })

ng1: / HomeController template

Our home template is small: we use an ng-repeat to repeat over the pins in
$scope.pins. Then we render each pin with the pin directive.

Converting an AngularJS 1.x App to Angular 642

code/upgrade/ng1/templates/home.html

1 <div class="container">

2 <div class="row">

3 <pin item="pin" ng-repeat="pin in ctrl.pins">

4 </pin>

5 </div>

6 </div>

Let’s dive deeper and look at this pin directive.

ng1: pin Directive

The pin directive is restricted to matching an element (E) and has a template.

We can input our pin via the item attribute, as we did in the home.html template.

Our link function, defines a function on the scope called toggleFav which toggles
the pin’s faved property.

code/upgrade/ng1/js/app.js

92 })

93 .directive('pin', function() {

94 return {

95 restrict: 'E',

96 templateUrl: '/templates/pin.html',

97 scope: {

98 'pin': "=item"

99 },

100 link: function(scope, elem, attrs) {

101 scope.toggleFav = function() {

102 scope.pin.faved = !scope.pin.faved;

103 }

104 }

105 }

106 })

Converting an AngularJS 1.x App to Angular 643

This directive shouldn’t be taken as an example of directive using the
current best-practices. For instance, if I was writing this component anew
(in ng1) I would probably use the new .component directive available in
AngularJS 1.5+. At the very least, I’d probably use controllerAs instead of
link here.

But this section is less about how to write ng1 code, as much as how to
work with the ng1 code you already have.

ng1: pin Directive template

The template templates/pin.html renders an individual pin on our page.

code/upgrade/ng1/templates/pin.html

1 <div class="col-sm-6 col-md-4">

2 <div class="thumbnail">

3 <div class="content">

4

5 <div class="caption">

6 <h3>{{pin.title}}</h3>

7 <p>{{pin.description | truncate:100}}</p>

8 </div>

9 <div class="attribution">

10

11 <h4>{{pin.user_name}}</h4>

12 </div>

13 </div>

14 <div class="overlay">

15 <div class="controls">

16 <div class="heart">

17 <a ng-click="toggleFav()">

18

19

20

21 </div>

22 </div>

23 </div>

24 </div>

25 </div>

The directives we use here are ng1 built-ins:

Converting an AngularJS 1.x App to Angular 644

• We use ng-src to render the img.
• Next we show the pin.title and pin.description.
• We use ng-if to show either the red or empty heart

The most interesting thing here is the ng-click that will call toggleFav. toggleFav
changes the pin.faved property and thus the red or empty heart will be shown
accordingly.

Red vs. Black Heart

Now let’s turn our attention to the AddController.

ng1: AddController

Our AddController has a bit more code than the HomeController. We open by
defining the controller and specifying the services it will inject:

code/upgrade/ng1/js/app.js

63 .controller('AddController', function($state, PinsService, $timeout) {

64 var ctrl = this;

65 ctrl.saving = false;

We’re using controllerAs syntax in our router and template, which means we set
properties on this instead of on $scope. Scoping this in ES5 JavaScript can be tricky,
so we assign var ctrl = this; which helps disambiguate when we’re referencing
the controller in nested functions.

Converting an AngularJS 1.x App to Angular 645

code/upgrade/ng1/js/app.js

67 var makeNewPin = function() {

68 return {

69 "title": "Steampunk Cat",

70 "description": "A cat wearing goggles",

71 "user_name": "me",

72 "avatar_src": "images/avatars/me.jpg",

73 "src": "/images/pins/cat.jpg",

74 "url": "http://cats.com",

75 "faved": false,

76 "id": Math.floor(Math.random() * 10000).toString()

77 }

78 }

79

80 ctrl.newPin = makeNewPin();

We create a function makeNewPin that contains the default structure and data for a
pin.

We also initialize this controller by setting ctrl.newPin to the value of calling this
function.

The last thing we need to do is define the function to submit a new pin:

code/upgrade/ng1/js/app.js

82 ctrl.submitPin = function() {

83 ctrl.saving = true;

84 $timeout(function() {

85 PinsService.addPin(ctrl.newPin).then(function() {

86 ctrl.newPin = makeNewPin();

87 ctrl.saving = false;

88 $state.go('home');

89 });

90 }, 2000);

91 }

92 })

Essentially, this article is calling out to PinService.addPin and creating a new pin.
But there’s a few other things going on here.

In a real application, this would almost certainly call back to a server. We’re
mimicking that effect by using $timeout. (That is, you could remove the $timeout

Converting an AngularJS 1.x App to Angular 646

function and this would still work. It’s just here to deliberately slow down the app
to give us a chance to see the “Saving” indicator.)

We want to give some indication to the user that their pin is saving, so we set the
ctrl.saving = true.

We call PinsService.addPin giving it our ctrl.newPin. addPin returns a promise, so
in our promise function we

1. revert ctrl.newPin to the original value
2. we set ctrl.saving to false, because we’re done saving the pin
3. we use the $state service to redirect the user to the homepage where we can

see our new pin

Here’s the whole code of the AddController:

code/upgrade/ng1/js/app.js

63 .controller('AddController', function($state, PinsService, $timeout) {

64 var ctrl = this;

65 ctrl.saving = false;

66

67 var makeNewPin = function() {

68 return {

69 "title": "Steampunk Cat",

70 "description": "A cat wearing goggles",

71 "user_name": "me",

72 "avatar_src": "images/avatars/me.jpg",

73 "src": "/images/pins/cat.jpg",

74 "url": "http://cats.com",

75 "faved": false,

76 "id": Math.floor(Math.random() * 10000).toString()

77 }

78 }

79

80 ctrl.newPin = makeNewPin();

81

82 ctrl.submitPin = function() {

83 ctrl.saving = true;

84 $timeout(function() {

85 PinsService.addPin(ctrl.newPin).then(function() {

86 ctrl.newPin = makeNewPin();

87 ctrl.saving = false;

Converting an AngularJS 1.x App to Angular 647

88 $state.go('home');

89 });

90 }, 2000);

91 }

92 })

ng1: AddController template

Our /add route renders the add.html template.

Adding a New Pin Form

The template uses ng-model to bind the input tags to the properties of the newPin on
the controller.

The interesting things here are that:

Converting an AngularJS 1.x App to Angular 648

• We use ng-click on the submit button to call ctrl.submitPin and
• We show a “Saving…” message if ctrl.saving is truthy

code/upgrade/ng1/templates/add.html

1 <div class="container">

2 <div class="row">

3

4 <form class="form-horizontal">

5

6 <div class="form-group">

7 <label for="title"

8 class="col-sm-2 control-label">Title</label>

9 <div class="col-sm-10">

10 <input type="text"

11 class="form-control"

12 id="title"

13 placeholder="Title"

14 ng-model="ctrl.newPin.title">

15 </div>

16 </div>

17

18 <div class="form-group">

19 <label for="description"

20 class="col-sm-2 control-label">Description</label>

21 <div class="col-sm-10">

22 <input type="text"

23 class="form-control"

24 id="description"

25 placeholder="Description"

26 ng-model="ctrl.newPin.description">

27 </div>

28 </div>

29

30 <div class="form-group">

31 <label for="url"

32 class="col-sm-2 control-label">Link URL</label>

33 <div class="col-sm-10">

34 <input type="text"

35 class="form-control"

36 id="url"

37 placeholder="Link URL"

38 ng-model="ctrl.newPin.url">

39 </div>

Converting an AngularJS 1.x App to Angular 649

40 </div>

41

42 <div class="form-group">

43 <label for="url"

44 class="col-sm-2 control-label">Image URL</label>

45 <div class="col-sm-10">

46 <input type="text"

47 class="form-control"

48 id="url"

49 placeholder="Image URL"

50 ng-model="ctrl.newPin.src">

51 </div>

52 </div>

53

54 <div class="form-group">

55 <div class="col-sm-offset-2 col-sm-10">

56 <button type="submit"

57 class="btn btn-default"

58 ng-click="ctrl.submitPin()">Submit</button>

59 </div>

60 </div>

61 <div ng-if="ctrl.saving">

62 Saving...

63 </div>

64 </form>

65

66 </div>

67 </div>

ng1: Summary

There we have it. This app has just the right amount of complexity that we can start
porting it to Angular.

Building A Hybrid

Now we’re ready to start putting some Angular in our AngularJS 1 app.

Before we start using Angular in our browser, we’re going to need to make some
modifications to our project structure.

Converting an AngularJS 1.x App to Angular 650

You can find the code for this example in code/conversion/hybrid.

To run it, run:

1 npm install

2 npm start

Then open your browser to http://localhost:4200 – note that this is a
different URL than the pure-AngularJS 1 app above.

Hybrid Project Structure

The first step to creating a hybrid app is to make sure you have both ng1 and ng2
loaded as dependencies. Everyone’s situation is going to be slightly different.

In this example we’ve vendored the AngularJS 1 libraries (in js/vendor) and we’re
loading the Angular libraries from npm.

In your project, you might want to vendor them both, use bower¹⁴⁶, etc. However,
using npm is very convenient for Angular, and so we suggest using npm to install
Angular.

One of the first challenges we face when making a hybrid app is ensuring our build-
process can support both JavaScript and TypeScript files, as well as resolving our
assets, type-definitions, and so on.

Here we’re using Angular CLI (which is based onWebpack) in order to build this app.
We’ll describe the specific steps necessary to get our app runningwithin Angular CLI,
but if you have an existing build process, it might take some additional work to get
it in order.

Dependencies with package.json

You install dependencies with npm using the package.json file. Here’s our pack-

age.json for the hybrid example:

¹⁴⁶http://bower.io/

http://bower.io/
http://bower.io/

Converting an AngularJS 1.x App to Angular 651

code/upgrade/hybrid/package.json

1 {

2 "name": "hybrid",

3 "version": "0.0.0",

4 "license": "MIT",

5 "scripts": {

6 "ng": "ng",

7 "start": "ng serve --aot=false",

8 "build": "ng build",

9 "test": "ng test",

10 "lint": "ng lint",

11 "e2e": "ng e2e"

12 },

13 "private": true,

14 "dependencies": {

15 "@angular/animations": "9.0.0",

16 "@angular/common": "9.0.0",

17 "@angular/compiler": "9.0.0",

18 "@angular/core": "9.0.0",

19 "@angular/forms": "9.0.0",

20 "@angular/platform-browser": "9.0.0",

21 "@angular/platform-browser-dynamic": "9.0.0",

22 "@angular/router": "9.0.0",

23 "@angular/upgrade": "9.0.0-rc.14",

24 "core-js": "2.6.11",

25 "reflect-metadata": "0.1.13",

26 "rxjs": "6.5.4",

27 "tslib": "1.10.0",

28 "zone.js": "0.10.2"

29 },

30 "devDependencies": {

31 "@angular-devkit/build-angular": "0.900.1",

32 "@angular-devkit/build-optimizer": "0.900.0-rc.10",

33 "@angular/cli": "9.0.1",

34 "@angular/compiler-cli": "9.0.0",

35 "@angular/language-service": "9.0.0",

36 "@types/angular-ui-router": "1.1.40",

37 "@types/jasmine": "3.5.3",

38 "@types/jasminewd2": "2.0.8",

39 "@types/node": "12.12.26",

40 "codelyzer": "5.2.1",

41 "jasmine-core": "3.5.0",

42 "jasmine-spec-reporter": "4.2.1",

43 "karma": "4.3.0",

Converting an AngularJS 1.x App to Angular 652

44 "karma-chrome-launcher": "3.1.0",

45 "karma-cli": "~1.0.1",

46 "karma-coverage-istanbul-reporter": "2.1.1",

47 "karma-jasmine": "2.0.1",

48 "karma-jasmine-html-reporter": "1.5.2",

49 "protractor": "5.4.3",

50 "ts-node": "8.3.0",

51 "tslint": "5.18.0",

52 "typescript": "3.7.5"

53 }

54 }

If you’re unfamiliar with what one of these packages does, it’s a good idea
to find out. rxjs, for example, is the library that provides our observables.

Notice that we’ve included the @angular/upgrade package. This module contains the
tools necessary for booting a hybrid app.

Compiling our code

We’re going to be using TypeScript in this example alongside our JavaScript Angu-
larJS 1 code. To do this, we’re going to put all of our “old” JavaScript code in the
folder js/.

We also want to load AngularJS, as well as angular-ui-router and our AngularJS 1
app. Here, to do this we’re going to include them in the scripts tag of our .angular-
cli.json

Converting an AngularJS 1.x App to Angular 653

1 {

2 "apps": [

3 {

4 // ...

5 "scripts": [

6 "js/vendor/angular.js",

7 "js/vendor/angular-ui-router.js",

8 "js/app.js"

9],

10 }

11]

12 }

This step may vary depending on your build process. For instance, if you
have an existing AngularJS app you may have an existing build process
that builds that app into one or a few files (e.g. using Gulp or another build
system). In that case, if you want to bring that build into your Angular
CLI project, you could have a separate step that would build those files and
import them into “scripts” here.

In the case that you want a more unified workflow, you’ll need to run ng

eject and modify the generated Webpack file from there.

That said, building custom Webpack configurations is beyond the scope of
this book.

When we write hybrid ng2 apps the Angular code becomes the entry point. This
makes sense because it’s Angular that’s providing the backwards compatibility
with AngularJS 1. Let’s take a closer look at the bootstrapping process.

Bootstrapping our Hybrid App

Now that we have our project structure in place, let’s bootstrap the app.

If you recall, with AngularJS 1 you can bootstrap the app in 1 of two ways:

1. You can use the ng-app directive, such as ng-app='interestApp', in your HTML
or

2. You can use angular.bootstrap in JavaScript

Converting an AngularJS 1.x App to Angular 654

In hybrid apps we use a new bootstrapmethod that comes from an UpgradeAdapter.

Since we’ll be bootstrapping the app in code, make sure you remove the ng-app

from your index.html.

Here’s what a minimal bootstrapping of our code would look like:

// code/upgrade/hybrid/src/app/app.module.ts

import {

NgModule,

forwardRef

} from '@angular/core';

import { CommonModule } from '@angular/common';

import { BrowserModule } from '@angular/platform-browser';

import { UpgradeAdapter } from '@angular/upgrade';

declare var angular: any;

/*

* Create our upgradeAdapter

*/

const upgradeAdapter: UpgradeAdapter = new UpgradeAdapter(

forwardRef(() => MyAppModule)); // <-- notice forward reference

// ...

// upgrade and downgrade components in here

// ...

/*

* Create our app's entry NgModule

*/

@NgModule({

declarations: [MyNg2Component, ...],

imports: [

CommonModule,

BrowserModule

],

providers: [MyNg2Services, ...]

})

class MyAppModule { }

/*

* Bootstrap the App

*/

upgradeAdapter.bootstrap(document.body, ['interestApp']);

Converting an AngularJS 1.x App to Angular 655

We start by importing the UpgradeAdapter and then we create an instance of it:
upgradeAdapter.

However, the constructor of UpgradeAdapter requires an NgModule that we’ll be using
for our Angular up - but we haven’t defined it yet! To get around this we use the
forwardRef function which allows us to take a ‘forward reference’ to our NgModule
which we declare below.

When we define our NgModule MyAppModule (or specifically in this app it will be
InterestAppModule), we define it like we would any other Angular NgModule: we
put in our declarations, imports, providers, etc.

Lastly, we tell the upgradeAdapter to bootstrap our app on the element docu-

ment.body and we specify the module name of our AngularJS 1 app.

This will bootstrap our AngularJS 1 app within our Angular app! Now we can start
replacing pieces with Angular.

What We’ll Upgrade

Let’s discuss what we’re going to port to ng2 in this example and what will stay in
ng1.

Converting an AngularJS 1.x App to Angular 656

The Homepage

Homepage ng1 and ng2 Components

The first thing to notice is that we’re going to continue to manage routing with
ng1. Of course, Angular has its own routing, which you can read about in our
routing chapter. But if you’re building a hybrid app, you probably have lots of routes
configured with AngularJS 1 and so in this example we’ll continue to use ui-router
for the routing.

On the homepage, we’re going to nest a ng2 component within an ng1 directive. In
this case, we’re going to convert the “pin controls” to a ng2 component. That is, our
ng1 pin directive, will call out to the ng2 pin-controls component and pin-controls
will render the fav heart.

It’s a small example that shows a powerful idea: how to seamlessly exchange data
between ng versions.

Converting an AngularJS 1.x App to Angular 657

The About Page

About Page ng1 and ng2 Components

We’re going to use ng1 for the router and header on the about page as well. However
on the about page, we’re going to replace the whole form with a ng2 component:
AddPinComponent.

If you recall, the form will add a new pin to the PinsService, and so in this example
we’re going to need to somehow make the (ng1) PinsService accessible to the (ng2)
AddPinComponent.

Also, remember that when a new pin is added, the app should be redirected to the
homepage. However, to change routes we need to use the ui-router $state service
(ng1) in the AddPinComponent (ng2). So we also need to make sure the $state service
can be used in AddPinComponent as well.

Converting an AngularJS 1.x App to Angular 658

Services

So far we’ve talked about two ng1 services that will be upgraded to ng2:

• PinsService and
• $state

We also want to explore “downgrading” a ng2 service to be used by ng1. For this,
later on in the chapter, we’ll create an AnalyticsService in TypeScript/ng2 that we
share with ng1.

Taking Inventory

So to recap we’re going to “cross-expose” the following:

• Downgrade the ng2 PinControlsComponent to ng1 (for the fav buttons)
• Downgrade the ng2 AddPinComponent to ng1 (for the add pin page)
• Downgrade the ng2 AnalyticsService to ng1 (for recording events)
• Upgrade the ng1 PinsService to ng2 (for adding new pins)
• Upgrade the ng1 $state service to ng2 (for controlling routes)

A Minor Detour: Typing Files

One of the great things about TypeScript is the compile-time typing. However, if
you’re building a hybrid app, I suspect that you’ve got a lot of untyped JavaScript
code that you’re going to be integrating into this project.

When you try to use your JavaScript code from TypeScript you may get compiler
errors because the compiler doesn’t know the structure of your JavaScript objects.
You could try casting everything to <any> but that is ugly and error prone.

The better solution is to, instead, provide your TypeScript compiler with custom type
decorators. Then the compiler will be able to enforce the types of your JavaScript
code.

For instance, remember how in our ng1 app we created a pin object in makeNewPin?

Converting an AngularJS 1.x App to Angular 659

code/upgrade/ng1/js/app.js

67 var makeNewPin = function() {

68 return {

69 "title": "Steampunk Cat",

70 "description": "A cat wearing goggles",

71 "user_name": "me",

72 "avatar_src": "images/avatars/me.jpg",

73 "src": "/images/pins/cat.jpg",

74 "url": "http://cats.com",

75 "faved": false,

76 "id": Math.floor(Math.random() * 10000).toString()

77 }

78 }

79

80 ctrl.newPin = makeNewPin();

It would be nice if we could tell the compiler about the structure of these objects and
not resort to using any everywhere.

Furthermore, we’re going to be using the ui-router $state service in Angular /
TypeScript, and we need to tell the compiler what functions are available there, too.

So while providing TypeScript custom type definitions is a TypeScript (and not an
Angular-specific) chore, it’s a chore we need to do nonetheless. And it’s something
that many people haven’t done yet because TypeScript is, at time of publishing,
relatively new.

So in this section I want to walk through how you deal with custom typings in
TypeScript.

If you’re already familiar with how to create and use TypeScript type
definition files, you can safely skim this section.

Typing Files

In TypeScript we can describe the structure of our code by writing typing definition
files. Typing definition files generally end in the extension .d.ts.

Converting an AngularJS 1.x App to Angular 660

Generally, when you write TypeScript code, you don’t need to write a .d.ts because
your TypeScript code itself contains types. We write .d.ts files when we have some
external JavaScript code that we want to add typing to after the fact.

For instance, in describing our pin object, we could write an interface for it like so:

code/upgrade/hybrid/src/js/app.d.ts

1 interface Pin {

2 title: string;

3 description: string;

4 user_name: string;

5 avatar_src: string;

6 src: string;

7 url: string;

8 faved: boolean;

9 id: string;

10 }

Notice that we’re not declaring a class, and we’re not creating an instance. Instead,
we’re defining the shape (types) of an interface.

In order to use.d.ts files, you need to tell the TypeScript compiler where they are.
The easiest way to do this is by adding a reference to typings.d.ts. For instance in
typings.d.ts we’ll add this:

1 /// <reference path="./js/app.d.ts"/>

We’ll write app.d.ts in a little bit. First, let’s explore a tool that exists to help us with
third-party TypeScript definition files: typings.

Third-party libraries with @types

Typescript allows for loading third-party types via NPM.

We’re going to use angular-ui-router with our app, so let’s install the typings for
angular-ui-router. To get this setup, all we have to do is install the @types/angular-
ui-router package.

Converting an AngularJS 1.x App to Angular 661

1 npm install @types/angular-ui-router --save

Now, by default, TypeScript will read types from the node_modules/@types/ direc-
tory. We’ll look at how we uses these types in our code in a moment.

Custom Typing Files

Being able to use third-party typing files is great, but there are going to be situations
where typing files don’t already exist: especially in the case of our own code.

Generally, when we write custom typing files we co-locate the file alongside its
respective JavaScript code. So let’s create the file js/app.d.ts:

code/upgrade/hybrid/src/js/app.d.ts

1 interface Pin {

2 title: string;

3 description: string;

4 user_name: string;

5 avatar_src: string;

6 src: string;

7 url: string;

8 faved: boolean;

9 id: string;

10 }

11

12 interface PinsService {

13 pins(): Promise<Pin[]>;

14 addPin(pin: Pin): Promise<any>;

15 }

Here we’re making an “ambient declaration” and the idea is that we’re defining a
variable that didn’t originate from a TypeScript file. In this case, we’re defining two
interfaces:

1. Pin
2. PinsService

The Pin interface describes the keys and value-types of a pin object.

The PinsService interface describes the types of our two methods on our PinsSer-
vice.

Converting an AngularJS 1.x App to Angular 662

• pins() returns a Promise of an array of Pins
• addPin() takes a Pin as an argument and returns a Promise

Learn More about Writing Type Definition Files

If you’d like to learn more about writing .d.ts files, checkout these helpful
links:

• TypeScript Handbook: Working with other JavaScript Libraries¹⁴⁷
• TypeScript Handbook: Writing definition files¹⁴⁸
• Quick tip: Typescript declare keyword¹⁴⁹

Now that we have this file setup, TypeScript will know about the Pin and PinsSer-

vice types in our code.

Writing ng2 PinControlsComponent

Now that we have the typings figured out, let’s turn our attention back to the hybrid
app.

The first thing we’re going to do is write the ng2 PinControlsComponent. This will
be an ng2 component nested within an ng1 directive. The PinControlsComponent

displays the fav hearts and toggles fav’ing a pin.

Next, let’s write our component:

¹⁴⁷http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
¹⁴⁸https://github.com/Microsoft/TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
¹⁴⁹http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/

http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
https://github.com/Microsoft/TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/
http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
https://github.com/Microsoft/TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/

Converting an AngularJS 1.x App to Angular 663

code/upgrade/hybrid/src/app/pin-controls/pin-controls.component.ts

1 import {

2 Component,

3 Input,

4 Output,

5 EventEmitter

6 } from '@angular/core';

7

8 @Component({

9 selector: 'pin-controls',

10 templateUrl: './pin-controls.component.html',

11 styleUrls: ['./pin-controls.component.css']

12 })

13 export class PinControlsComponent {

14 @Input() pin: Pin;

15 @Output() faved: EventEmitter<Pin> = new EventEmitter<Pin>();

16

17 toggleFav(): void {

18 this.faved.emit(this.pin);

19 }

20 }

Notice here that we’ll match the element pin-controls.

Our template looks very similar to the ng1 version except we’re using the ng2
template syntax for (click) and *ngIf.

Now the component definition class:

code/upgrade/hybrid/src/app/pin-controls/pin-controls.component.html

1 <div class="controls">

2 <div class="heart">

3 <a (click)="toggleFav()">

4

5

6

7 </div>

8 </div>

Notice that instead of specifying inputs and outputs in the @Component decorator,
in this case we’re annotating the properties on the class directly with the @Input

Converting an AngularJS 1.x App to Angular 664

and @Output decorators. This is a convenient way to us to provide typings to these
properties.

This component will take an input of pin, which is the Pin object we’re controlling.

This component specifies an output of faved. This is a little bit different than how
we did it in the ng1 app. If you look at toggleFav all we’re doing is emitting (on the
EventEmitter) the current pin.

The idea here is that we’ve already implemented how to change the faved state in
ng1 and we may not want to re-implement that functionality ng2 (you may want to,
it just depends on your team conventions).

Using ng2 PinControlsComponent

Now that we have an ng2 pin-controls component, we can now use it in a
AngularJS 1 template. Here’s what our pin.html template looks like now:

code/upgrade/hybrid/src/assets/templates/pin.html

1 <div class="col-sm-6 col-md-4">

2 <div class="thumbnail">

3 <div class="content">

4

5 <div class="caption">

6 <h3>{{pin.title}}</h3>

7 <p>{{pin.description | truncate:100}}</p>

8 </div>

9 <div class="attribution">

10

11 <h4>{{pin.user_name}}</h4>

12 </div>

13 </div>

14 <div class="overlay">

15 <pin-controls [pin]="pin"

16 (faved)="toggleFav($event)"></pin-controls>

17 </div>

18 </div>

19 </div>

This template is for an ng1 directive, and we can use ng1 directives such as ng-src.
However, notice the line where we use our ng2 pin-controls component:

Converting an AngularJS 1.x App to Angular 665

<pin-controls [pin]="pin"

(faved)="toggleFav($event)"></pin-controls>

What’s interesting here is that we’re using the ng2 input bracket syntax [pin] and
the ng2 output parentheses syntax (faved).

In a hybrid appwhen you use ng2 directives in ng1, you still use the ng2 syntax.

With our input [pin] we’re passing the pin which comes from the scope of the ng1
directive.

With our output (faved) we’re calling the toggleFav function on the scope of
the ng1 directive. Notice what we did here: we didn’t modify the pin.faved state
within the ng2 directive (although, we could have). Instead, we asked the ng2
PinControlsComponent to simply emit the pin when toggleFav is called there. (If
this is confusing, take a second look at toggleFav of PinControlsComponent.)

Again, the reason we do this is because we’re showing how you can keep your
existing functionality (scope.toggleFav) in ng1, but start porting over components
to ng2. In this case, the ng1 pin directive listens for the faved event on the ng2
PinControlsComponent.

If you refresh your page now, you’ll notice that it doesn’t work. That’s because there’s
one more thing we need to do: downgrade PinControlsComponent to ng1.

Downgrading ng2 PinControlsComponent to ng1

The final step to using our components across ng2/ng1 borders is to use our
UpgradeAdapter to downgrade our components (or upgrade, as we’ll see in a bit).

We perform this downgrade in our app.module.ts file

First we need to import the necessary libraries and declare the angular variable:

Converting an AngularJS 1.x App to Angular 666

code/upgrade/hybrid/src/app/app.module.ts

1 import {

2 NgModule,

3 forwardRef

4 } from '@angular/core';

5 import { UpgradeAdapter } from '@angular/upgrade';

6 import { BrowserModule } from '@angular/platform-browser';

7

8 import { FormsModule } from '@angular/forms';

9 import { HttpClientModule } from "@angular/common/http";

10

11 import { AppComponent } from './app.component';

12 import { AddPinComponent } from './add-pin/add-pin.component';

13 import { PinControlsComponent } from './pin-controls/pin-controls.component';

14 import { AnalyticsService } from './analytics.service';

15

16 declare var angular: any;

Then we create a .directive in (almost) the normal ng1 way:

code/upgrade/hybrid/src/app/app.module.ts

16 declare var angular: any;

17

18 /*

19 * Create our upgradeAdapter

20 */

21 export const upgradeAdapter: UpgradeAdapter = new UpgradeAdapter(

22 forwardRef(() => AppModule));

23

24 /*

25 * Expose our ng2 content to ng1

26 */

27 angular.module('interestApp')

28 .directive('pinControls',

29 upgradeAdapter.downgradeNg2Component(PinControlsComponent))

Remember that our ng1 app calls angular.module('interestApp', []). That is, our
ng1 app has already registered the interestApp module with angular.

Now we want to look up that module by calling angular.module('interestApp')

and then add directives to it, just like we do in ng1 normally.

Converting an AngularJS 1.x App to Angular 667

angular.module getter and setter syntax

If you recall, when we pass an array as the second argument
to angular.module, we are creating a module. That is,
angular.module('foo', []) will create the module foo. Informally,
we call this the “setter” syntax.

Similarly, if we omit the array we are getting a module (that is assumed
to already exist). That is, angular.module('foo') will get the module foo.
We call this the “getter” syntax.

In this example, if you forget this distinction and call
angular.module('interestApp', []) in app.ts (ng2) then you will
accidentally overwrite your existing interestApp module and your app
won’t work. Careful!

We’re calling .directive and creating a directive called 'pinControls'. This is stan-
dard ng1 practice. For the second argument, the directive definition object (DDO), we
don’t create theDDOmanually. Instead, we call upgradeAdapter.downgradeNg2Component.

downgradeNg2Componentwill convert our PinControlsComponent into an ng1-compatible
directive. Pretty neat.

Now if you try refreshing, you’ll notice that our faving works just like before, only
now we’re using ng2 embedded in ng1!

Faving works like a charm

Converting an AngularJS 1.x App to Angular 668

Adding Pins with ng2

The next thing we want to do is upgrade the add pins page with an ng2 component.

Adding a New Pin Form

If you recall, this page does three things:

1. Present a form to the user for describing the pin
2. Use the PinsService to add the new pin to the list of pins
3. Redirect the user to the homepage

Let’s think through how we’re going to do these things from ng2.

Angular provides a robust forms library. So there’s no complication here.We’re going
to write a straight ng2 form.

Converting an AngularJS 1.x App to Angular 669

However the PinsService comes from ng1. Often we have many existing services in
ng1 and we don’t have time to upgrade them all. So for this example, we’re going to
keep PinsService as an ng1 object, and inject it into ng2.

Similarly, we’re using ui-router in ng1 for our routing. To change pages in ui-router
we have to use the $state service, which is an ng1 service.

So what we’re going to do is upgrade the PinsService and the $state service from
ng1 to ng2. And this couldn’t be any easier.

Upgrading ng1 PinsService and $state to ng2

To upgrade ng1 services we call upgradeAdapter.upgradeNg1Provider:

code/upgrade/hybrid/src/app/app.module.ts

37 /*

38 * Expose our ng1 content to ng2

39 */

40 upgradeAdapter.upgradeNg1Provider('PinsService');

41 upgradeAdapter.upgradeNg1Provider('$state');

And that’s it. Now we can @Inject our ng1 services into ng2 components like so:

// angular.ui.IStateService is available because we've

// installed @types/angular-ui-router in our package.json

type IStateService = angular.ui.IStateService;

class AddPinComponent {

constructor(@Inject('PinsService') public pinsService: PinsService,

@Inject('$state') public uiState: IStateService) {

}

// ...

// now you can use this.pinsService

// or this.uiState

// ...

}

In this constructor, there’s a few things to look at:

The @Inject decorator, says that wewant the next variable to be assigned the value of
what the injectionwill resolve to. In the first case, that would be our ng1 PinsService.

Converting an AngularJS 1.x App to Angular 670

In TypeScript, in a constructor when you use the public keyword, it is a shorthand
for assigning that variable to this. That is, here when we say public pinsService

what we’re saying is, 1. declare a property pinsService on instances of this class and
2. assign the constructor argument pinsService to this.pinsService.

The result is that we can access this.pinsService throughout our class.

Lastly we define the type of both services we’re injecting: PinsService and IState-

Service.

PinsService comes from the app.d.ts we defined previously:

code/upgrade/hybrid/src/js/app.d.ts

12 interface PinsService {

13 pins(): Promise<Pin[]>;

14 addPin(pin: Pin): Promise<any>;

15 }

And IStateService comes from the typings for ui-router, which we installed with
typings.

By telling TypeScript the types of these services we can enjoy type-checking as we
write our code.

Let’s write the rest of our AddPinComponent.

Writing ng2 AddPinComponent

We start by importing the types we need:

Converting an AngularJS 1.x App to Angular 671

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

1 declare var angular: any;

2 import {

3 Component,

4 Inject

5 } from '@angular/core';

6 // angular.ui.IStateService is available because we've

7 // installed @types/angular-ui-router in our package.json

8 type IStateService = angular.ui.IStateService;

Again, notice that we’re importing our custom types Pin and PinsService. Andwe’re
also importing IStateService from angular-ui-router.

AddPinComponent @Component

Our @Component is straightforward:

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

10 @Component({

11 selector: 'add-pin',

12 templateUrl: './add-pin.component.html',

13 styleUrls: ['./add-pin.component.css']

14 })

AddPinComponent template

We’re loading our template using a templateUrl. In that template, we setup our form
much like the ng1 form, only we’re using ng2 form directives.

We’re not going to describe ngModel / ngSubmit deeply here. If you’d like to
know more about how Angular forms work, checkout the forms chapter,
where we describe forms in depth.

Converting an AngularJS 1.x App to Angular 672

code/upgrade/hybrid/src/app/add-pin/add-pin.component.html

1 <div class="container">

2 <div class="row">

3

4 <form (ngSubmit)="onSubmit()"

5 class="form-horizontal">

6

7 <div class="form-group">

8 <label for="title"

9 class="col-sm-2 control-label">Title</label>

10 <div class="col-sm-10">

11 <input type="text"

12 class="form-control"

13 id="title"

14 name="title"

15 placeholder="Title"

16 [(ngModel)]="newPin.title">

17 </div>

We’re using two directives here: ngSubmit and ngModel.

We use (ngSubmit) on the form to call the onSubmit function when the form is
submitted. (We’ll define onSubmit on the AddPinComponent controller below.)

We use [(ngModel)] to bind the value of the title input tag to the value of
newPin.title on the controller.

Here’s the full listing of the template:

code/upgrade/hybrid/src/app/add-pin/add-pin.component.html

1 <div class="container">

2 <div class="row">

3

4 <form (ngSubmit)="onSubmit()"

5 class="form-horizontal">

6

7 <div class="form-group">

8 <label for="title"

9 class="col-sm-2 control-label">Title</label>

10 <div class="col-sm-10">

11 <input type="text"

12 class="form-control"

Converting an AngularJS 1.x App to Angular 673

13 id="title"

14 name="title"

15 placeholder="Title"

16 [(ngModel)]="newPin.title">

17 </div>

18 </div>

19

20 <div class="form-group">

21 <label for="description"

22 class="col-sm-2 control-label">Description</label>

23 <div class="col-sm-10">

24 <input type="text"

25 class="form-control"

26 id="description"

27 name="description"

28 placeholder="Description"

29 [(ngModel)]="newPin.description">

30 </div>

31 </div>

32

33 <div class="form-group">

34 <label for="url"

35 class="col-sm-2 control-label">Link URL</label>

36 <div class="col-sm-10">

37 <input type="text"

38 class="form-control"

39 id="url"

40 name="url"

41 placeholder="Link URL"

42 [(ngModel)]="newPin.url">

43 </div>

44 </div>

45

46 <div class="form-group">

47 <label for="url"

48 class="col-sm-2 control-label">Image URL</label>

49 <div class="col-sm-10">

50 <input type="text"

51 class="form-control"

52 id="url"

53 name="url"

54 placeholder="Image URL"

55 [(ngModel)]="newPin.src">

56 </div>

Converting an AngularJS 1.x App to Angular 674

57 </div>

58

59 <div class="form-group">

60 <div class="col-sm-offset-2 col-sm-10">

61 <button type="submit"

62 class="btn btn-default"

63 >Submit</button>

64 </div>

65 </div>

66 <div *ngIf="saving">

67 Saving...

68 </div>

69 </form>

AddPinComponent Controller

Now we can define AddPinComponent. We start by setting up two instance variables:

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

15 export class AddPinComponent {

16 saving = false;

17 newPin: Pin;

We use saving to indicate to the user that the save is in progress and we use newPin
to store the Pin we’re working with.

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

19 constructor(@Inject('PinsService') private pinsService: PinsService,

20 @Inject('$state') private uiState: IStateService) {

21 this.newPin = this.makeNewPin();

22 }

In our constructor we Inject the services, as we discussed above. We also set
this.newPin to the value of makeNewPin, which we’ll define now:

Converting an AngularJS 1.x App to Angular 675

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

24 makeNewPin(): Pin {

25 return {

26 title: 'Steampunk Cat',

27 description: 'A cat wearing goggles',

28 user_name: 'me',

29 avatar_src: '/assets/images/avatars/me.jpg',

30 src: '/assets/images/pins/cat.jpg',

31 url: 'http://cats.com',

32 faved: false,

33 id: Math.floor(Math.random() * 10000).toString()

34 };

35 }

This looks a lot like how we defined it in ng1, only now we have the benefit of it
being typed.

When the form is submitted, we call onSubmit. Let’s define that:

code/upgrade/hybrid/src/app/add-pin/add-pin.component.ts

37 onSubmit(): void {

38 this.saving = true;

39 console.log('submitted', this.newPin);

40 setTimeout(() => {

41 this.pinsService.addPin(this.newPin).then(() => {

42 this.newPin = this.makeNewPin();

43 this.saving = false;

44 this.uiState.go('home');

45 });

46 }, 2000);

47 }

Again, we’re using a timeout to simulate the effect of what would happen if we had
to call out to a server to save this pin. Here, we’re using setTimeout. Compare that
to how we defined this function in ng1:

Converting an AngularJS 1.x App to Angular 676

code/upgrade/ng1/js/app.js

82 ctrl.submitPin = function() {

83 ctrl.saving = true;

84 $timeout(function() {

85 PinsService.addPin(ctrl.newPin).then(function() {

86 ctrl.newPin = makeNewPin();

87 ctrl.saving = false;

88 $state.go('home');

89 });

90 }, 2000);

91 }

Notice that in ng1 we had to use the $timeout service. Why is that? Because ng1 is
based around the digest loop. If you use setTimeout in ng1, then when the callback
function is called, it’s “outside” of angular and so your changes aren’t propagated
unless something kicks off a digest loop (e.g. using $scope.apply).

However in ng2, we can use setTimeout directly because change detection in ng2
uses Zones and is therefore, more or less automatic. We don’t need to worry about
the digest loop in the same way, which is really nice.

In onSubmit we’re calling out to the PinsService by:

this.pinsService.addPin(this.newPin).then(() => {

// ...

});

Again, the PinsService is accessible via this.pinsService because of how we
defined the constructor. The compiler doesn’t complain because we said that addPin
takes a Pin as the first argument in our app.d.ts:

code/upgrade/hybrid/src/js/app.d.ts

13 pins(): Promise<Pin[]>;

14 addPin(pin: Pin): Promise<any>;

15 }

And we defined this.newPin to be a Pin.

Converting an AngularJS 1.x App to Angular 677

After addPin resolves, we reset the pin using makeNewPin and set this.saving =

false.

To go back to the homepage, we use the ui-router $state service, which we stored
as this.uiState. So we can change states by calling this.uiState.go('home').

Using AddPinComponent

Now let’s use the AddPinComponent.

Downgrade ng2 AddPinComponent

To use AddPinComponent we need to downgrade it:

code/upgrade/hybrid/src/app/app.module.ts

27 angular.module('interestApp')

28 .directive('pinControls',

29 upgradeAdapter.downgradeNg2Component(PinControlsComponent))

30 .directive('addPin',

31 upgradeAdapter.downgradeNg2Component(AddPinComponent));

This will create the addPin directive in ng1, which will match the tag <add-pin>.

Routing to add-pin

In order to use our new AddPinComponent page, we need to place it somewhere within
our ng1 app. What we’re going to do is take the add state in our router and just set
the <add-pin> directive to be the template:

Converting an AngularJS 1.x App to Angular 678

code/upgrade/hybrid/src/js/app.js

39 .state('add', {

40 template: "<add-pin></add-pin>",

41 url: '/add',

42 resolve: {

43 'pins': function(PinsService) {

44 return PinsService.pins();

45 }

46 }

47 })

Exposing an ng2 service to ng1

So far we’ve downgraded ng2 components to be used in ng2, and upgraded ng1
services to be used in ng2. But as our application start converting over to ng2, we’ll
probably start writing services in Typescript/ng2 that we’ll want to expose to our
ng1 code.

Let’s create a simple service in ng2: an “analytics” service that will record events.

The idea is that we have an AnalyticsService in our app that we use to recordE-

vents. In reality, we’re just going to console.log the event and store it in an array.
But it gives us a chance to focus on what’s important: describing how we share a ng2
service with ng1.

Writing the AnalyticsService

Let’s take a look at the AnalyticsService implementation:

Converting an AngularJS 1.x App to Angular 679

code/upgrade/hybrid/src/app/analytics.service.ts
1 import { Injectable } from '@angular/core';

2

3 /**

4 * Analytics Service records metrics about what the user is doing

5 */

6 @Injectable()

7 export class AnalyticsService {

8 events: string[] = [];

9

10 public recordEvent(event: string): void {

11 console.log(`Event: ${event}`);

12 this.events.push(event);

13 }

14 }

There are two things to note here: 1. recordEvent and 2. being Injectable

recordEvent is straightforward: we take an event: string, log it, and store it in
events. In your application you would probably send the event to an external service
like Google Analytics or Mixpanel.

To make this service injectable, we do two things: 1. Annotate the class with
@Injectable and 2. bind the token AnalyticsService to this class.

The @Injectable decorator really means that other dependencies can be
injected into this service, but it’s recommended to add it to all services,
even those that don’t have dependencies. Read more about @Injectable in
the chapter on dependency injection

Now Angular will manage a singleton of this service and we will be able to inject it
where we need it.

Downgrade ng2 AnalyticsService to ng1

Before we can use the AnalyticsService in ng1, we need to downgrade it.

The process of downgrading an ng2 service to ng1 is similar to the process of
downgrading a directive, but there is one extra step: we need to make sure Anaytic-
sService is in the list of providers for our NgModule:

Converting an AngularJS 1.x App to Angular 680

code/upgrade/hybrid/src/app/app.module.ts

43 @NgModule({

44 declarations: [

45 AppComponent,

46 AddPinComponent,

47 PinControlsComponent

48],

49 imports: [

50 BrowserModule,

51 FormsModule,

52 HttpClientModule

53],

54 providers: [

55 AnalyticsService

56]

57 })

58 export class AppModule { }

Then we can use downgradeNg2Provider:

code/upgrade/hybrid/src/app/app.module.ts

33 angular.module('interestApp')

34 .factory('AnalyticsService',

35 upgradeAdapter.downgradeNg2Provider(AnalyticsService));

We call angular.module('interestApp') to get our ng1 module and then call
.factory like we would in ng1. To downgrade the service, we call

upgradeAdapter.downgradeNg2Provider(AnalyticsService), which wraps our An-
alyticsService in a function that adapts it to an ng1 factory.

Using AnalyticsService in ng1

Now we can inject our ng2 AnalyticsService into ng1. Let’s say we want to record
whenever the HomeController is visited. We could record this event like so:

Converting an AngularJS 1.x App to Angular 681

code/upgrade/hybrid/src/js/app.js

60 .controller('HomeController', function(pins, AnalyticsService) {

61 AnalyticsService.recordEvent('HomeControllerVisited');

62 this.pins = pins;

63 })

Here we inject AnalyticsService as if it was a normal ng1 service we call recordE-
vent. Fantastic!

We can use this service anywhere we would use injection in ng1. For instance, we
can also inject the AnalyticsService into our ng1 pin directive:

code/upgrade/hybrid/src/js/app.js

64 .directive('pin', function(AnalyticsService) {

65 return {

66 restrict: 'E',

67 templateUrl: '/assets/templates/pin.html',

68 scope: {

69 'pin': "=item"

70 },

71 link: function(scope, elem, attrs) {

72 scope.toggleFav = function() {

73 AnalyticsService.recordEvent('PinFaved');

74 scope.pin.faved = !scope.pin.faved;

75 }

76 }

77 }

78 })

Summary

Now you have all the tools you need to start upgrading your ng1 app to a hybrid
ng1/ng2 app. The interoperability between ng1 and ng2 works very well and we owe
a lot to the Angular team for making this so easy.

Being able to exchange directives and services between ng1 and ng2 make it super
easy to start upgrading your apps. We can’t always upgrade our apps to ng2
overnight, but the UpgradeAdapter lets us start using ng2 - without having to throw
our old code away.

Converting an AngularJS 1.x App to Angular 682

References

If you’re looking to learn more about hybrid Angular apps, here are a few resources:

• The Official Angular Upgrade Guide¹⁵⁰
• The Angular2 Upgrade Spec Test¹⁵¹
• The Angular2 Source for DowngradeNg2ComponentAdapter¹⁵²

¹⁵⁰https://angular.io/docs/ts/latest/guide/upgrade.html
¹⁵¹https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
¹⁵²https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts

https://angular.io/docs/ts/latest/guide/upgrade.html
https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts
https://angular.io/docs/ts/latest/guide/upgrade.html
https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts

NativeScript: Mobile
Applications for the Angular
Developer

In this chapter, we’re going to walk through how to build your first
NativeScript app. NativeScript is a huge topic that could warrant it’s own
book.

Here we’re going to explain NativeScript for the Angular Developer.
By the end of this chapter you’ll understand the differences between
NativeScript and a ‘regular’ Angular web-app, and have the foundation
to be creating your own native apps using NativeScript and Angular.

Being that Angular was designed to be unspecific to any particular deployment
platform, you can take much of your web application code and reuse it beyond just
the web.

It is the norm for businesses to have not only a fully functional web application, but
a mobile application to compliment it as well. A few years back, companies would
need to spend countless dollars to fund a team of iOS and Android developers to
accomplish the same task of creating a mobile application.

With Angular, mobile development becomes not only cheaper, but more maintain-
able and efficient.

What is NativeScript?

NativeScript is a cross platform mobile development framework that leverages
technologies you already know: JavaScript, CSS, and of course, Angular.

NativeScript: Mobile Applications for the Angular Developer 684

NativeScript Showcase

With NativeScript, developers can build native iOS and Android applications using
a single shared code base.

Where NativeScript Differs from Other Popular
Frameworks

NativeScript isn’t the first or only framework to make it easy to develop Android
and iOS applications using a single code base. Mobile development frameworks can
be separated into two: hybrid mobile and native mobile.

Hybrid Mobile Applications

Hybrid mobile frameworks are those such as Ionic Framework¹⁵³, PhoneGap¹⁵⁴,
Apache Cordova¹⁵⁵, andOnsen UI¹⁵⁶. These are frameworks that allow you to develop

¹⁵³https://ionicframework.com/
¹⁵⁴http://phonegap.com/
¹⁵⁵https://cordova.apache.org/
¹⁵⁶https://onsen.io/

https://ionicframework.com/
http://phonegap.com/
https://cordova.apache.org/
https://onsen.io/
https://ionicframework.com/
http://phonegap.com/
https://cordova.apache.org/
https://onsen.io/

NativeScript: Mobile Applications for the Angular Developer 685

mobile applications using web technologies, but render these mobile applications in
what’s called a web view. A web view is essentially a web browser and it allows you
to use HTML with full DOM support for all your component rendering.

The conveniences of a web view is not without limitation. The number one flaw in
using a web view to render mobile applications comes down to performance. Not all
mobile devices are treated as equal even if they have the same version of Android or
iOS. There are thousands of different mobile handsets in existence all with varying
hardware and processing power, not to mention all the custom flavors of Android.
Because of this diversity, the consistency in web view performance is very poor,
leaving some people with an amazing user experience and some with hardly useable
applications.

Native Mobile Applications

Native mobile applications built with frameworks such as NativeScript¹⁵⁷, React
Native¹⁵⁸, and Xamarin¹⁵⁹ do not render in a web view. These are applications that
use the native UI components that Google and Apple made available to developers
and as a result don’t suffer from performance instability.

So how does one choose between the available native mobile frameworks? The sim-
ple answer is to choose between each of their underlying development technologies.
React Native uses ReactJS, a common JavaScript framework for web developers,
and Xamarin uses C#, a common development language for .NET developers.
NativeScript of course uses Angular.

As an Angular developer, it makes sense to go the NativeScript route because we’ll
get fantastic native performance while keeping our familiar Angular development
experience.

What are the System and Development Requirements
for NativeScript?

NativeScript doesn’t have any system requirements beyond what you’d need when
developing Objective-C based iOS applications or Java based Android applications.

¹⁵⁷https://www.nativescript.org/
¹⁵⁸https://facebook.github.io/react-native/
¹⁵⁹https://www.xamarin.com/

https://www.nativescript.org/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://www.xamarin.com/
https://www.nativescript.org/
https://facebook.github.io/react-native/
https://www.xamarin.com/

NativeScript: Mobile Applications for the Angular Developer 686

For example, let’s say you wanted to build and deploy an Android application
developed with NativeScript. You would need at least the following:

• Windows, Linux, or Mac
• Java Development Kit (JDK) 8+
• 4GB of hard drive space
• 4GB of RAM

The above system and software requirements are what’s necessary for installing and
using the Android SDK.

If you wanted to build and deploy and iOS application with NativeScript, the
requirements are a bit different:

• Mac
• Xcode 7+
• 5GB of hard drive space
• 4GB of RAM

Notice the main difference here is that a Mac is required. While you can develop
Android and iOS applications with NativeScript, you cannot actually build and
deploy iOS applications unless you’re using a Mac. This is a limitation that exists
because of Apple.

From a development perspective, NativeScript uses the Node Package Manager
(NPM) a tool that is part of Node.js and something you probably already have
installed as an Angular developer. With NPM, the NativeScript CLI can be installed
using the following command:

1 npm install -g nativescript

NativeScript: Mobile Applications for the Angular Developer 687

Installing NativeScript

A list of available commands can be found by running tns --help or tns help if you
wish to view them in a web browser rather than the Command Prompt or Terminal.

For more information on installing NativeScript for Mac, Windows, and Linux, visit
the NativeScript installation documentation¹⁶⁰.

There are a significant number of tools to be installed to do native app
development. Once everything is installed properly, NativeScript develop-
ment is relatively painless, but make sure you visit the URL above if you
run into any trouble getting the NativeScript build tools installed.

With the NativeScript CLI, native mobile applications can be developed with Angu-
lar.
¹⁶⁰https://docs.nativescript.org/start/quick-setup.html

https://docs.nativescript.org/start/quick-setup.html
https://docs.nativescript.org/start/quick-setup.html

NativeScript: Mobile Applications for the Angular Developer 688

Creating your First Mobile Application with
NativeScript and Angular

To be successful in developing NativeScript applications with Angular, you should
already have the NativeScript CLI tool installed and either Xcode or the Android
SDK installed, or both.

The goal here is to become familiar with the mobile application creation process
and some of the UX and UI differences between an Angular web application and an
Angular NativeScript application.

Using the Command Prompt (Windows) or Terminal (Mac and Linux), execute the
following:

1 tns create NgProject --ng

The above command will create a project directory, NgProject, wherever your
command line’s active directory is located. The --ng flag indicates that we want
to create an Angular with TypeScript project. It is necessary to use the --ng flag
because NativeScript doesn’t require Angular to build mobile applications. It is an
option, one that we’re going to take full advantage of.

Adding Build Platforms for Cross Platform Deployment

While a project has been created and can be actively developed, there are no build
platforms such as Android or iOS enabled for building and deployment.

To build for a specific platform, it must first be added. Using the NativeScript CLI,
execute the following:

1 tns platform add [platform]

Just swap out [platform] with either android or ios depending on which you wish
to add, remembering that iOS requires a Mac with Xcode installed.

NativeScript: Mobile Applications for the Angular Developer 689

Building and Testing for Android and iOS

When the application is ready for testing or deployment to the app stores, we can
make use of a few NativeScript CLI commands. Before deployment, you’ll probably
want to test the application on your device or emulator. Using the command line,
execute the following to emulate the application:

1 tns emulate [platform]

Swapping [platform]with android or ioswill launch the application in the specified
emulator. To test the application on a device, swap out emulate with the word run

while your device is connected to your development machine.

1 tns run [platform]

The emulation process can often take a bit of time because a lot of recompilation
happens in the process. To make development more efficient, the NativeScript
CLI offers live-reload functionality called live-sync. We can utilize this feature by
executing the following command in our terminal:

1 tns livesync [platform] --emulator --watch

After swapping [platform]with either android or ios, changes made to TypeScript,
CSS, or HTML files will be automatically deployed to the Android or iOS simulator,
much faster than if you were to strictly emulate the application.

When it comes to deploying our app to the app store, we can use the following
command:

1 tns build [platform]

After replacing [platform] with the appropriate platform, the binaries and build
packages will be created.

NativeScript: Mobile Applications for the Angular Developer 690

Installing JavaScript, Android, and iOS Plugins and
Packages

Like with any Angular web application, there are external components available to
make the development process easier. This applies to NativeScript applications as
well.

Most JavaScript packages will work in a NativeScript application as long as there isn’t
a dependency on the DOM. As previously mentioned, NativeScript being a native
framework, doesn’t use a web view and has no concept of a DOM. JavaScript libraries
can be included via NPM, for example:

1 npm install jssha --save

The above would install the JavaScript hashing library, jsSHA, to your Angular
NativeScript project.

There are native plugins available strictly for NativeScript as well. These are typically
plugins that make use of native device features or interface with Android or iOS
directly in some fashion.

Take, for example, the NativeScript SQLite plugin:

1 tns plugin add nativescript-sqlite

The above command will install SQLite functionality for both Android and iOS.

Understanding the Web to NativeScript UI
and UX Differences

As a web developer you’re probably very familiar with HTML and common design
practices for building attractive, responsive, and overall great web applications. With
NativeScript we’re using Angular and CSS, but we’re not using HTML. Instead we
are using XML which won’t have the same markup tags that you’d find in HTML.

So how do you take your UI and UX skills to mobile?

NativeScript: Mobile Applications for the Angular Developer 691

There are a few things that need to be taken into consideration when designing
your mobile application. You need to worry about the screen layout and the screen
components.

Planning the NativeScript Page Layout

When designing a web application, common layout components include <div> tags
and <table> tags. Generally if you want a grid of rows and columns you’d use a
table and if you wanted a stack of components you’d use a div because it acted as a
container.

In NativeScript, you don’t have the <div> and <table> tags, but you have something
similar. Instead you have the <StackLayout> and <GridLayout> tags.

So let’s compare web and NativeScript.

Let’s say we wanted to contain a bunch of HTML components on a website. You
might do something like the following:

1 <div>

2 Nic Raboy was here

3 https://www.thepolyglotdeveloper.com

4 </div>

To accomplish the same in a NativeScript application, you’d do the following:

1 <StackLayout>

2 <Label text="Nic Raboy was here"></Label>

3 <Label text="https://www.thepolyglotdeveloper.com"></Label>

4 </StackLayout>

In both the web and NativeScript scenarios you can nest the <div> and <StackLay-

out> tags as appropriate to create more component groupings.

The use of grids in NativeScript and on the web are a bit different in structure, but
the same in concept. Take the following HTML:

NativeScript: Mobile Applications for the Angular Developer 692

1 <table>

2 <tr>

3 <td>Nic</td>

4 <td>Raboy</td>

5 </tr>

6 <tr>

7 <td>Burke</td>

8 <td>Holland</td>

9 </tr>

10 </table>

In NativeScript, instead of defining rows and columns with <tr> and <td> tags
something a little different happens:

1 <GridLayout rows="auto, auto" columns="*, *">

2 <Label text="Nic" row="0" col="0"></Label>

3 <Label text="Raboy" row="0" col="1"></Label>

4 <Label text="Burke" row="1" col="0"></Label>

5 <Label text="Holland" row="1" col="1"></Label>

6 </GridLayout>

In the above <GridLayout> we define that we want two rows that take the height of
their child components and two columns that stretch evenly to fill the screen.

But what about a flexbox, commonly found on the web?

When building websites, there is the opportunity to set <div> tags, or any other
container, to have a CSS property of display: flex. This allows websites to behave
appropriately for different screen sizes. Nearly the same can be used in NativeScript
using the <FlexboxLayout> as a container, which is nearly the same as the web’s
implementation.

Adding UI Components to the Page

When it comes to NativeScript there are many UI components available, each
accomplishing something different. For examplewe already saw how to display static
text on the screen through the use of the <Label> component, but what other options
are available?

NativeScript: Mobile Applications for the Angular Developer 693

There are too many components to name, but some of the common components
include buttons, images, lists, and inputs. These are all components that are common
to what you’d find in a web application as well.

To add a button to our application, we’d add the following to one of our layouts:

1 <Button text="Submit Me" (tap)="myFunc()"></Button>

Notice the use of the (tap) attribute. This is not specific to the UI component, but
more a mixture of Angular and NativeScript. In a web application these events are
better known as (click) events, however, they both accomplish the same.

To include an image, local or remote, within an application, we can use the <Image>
tag like so (similar to the tag on the web):

1 <Image src="https://placehold.it/350x150"></Image>

Many mobile applications, like web applications, collect data from users. This data
is collected through forms composed of text input fields. To accept text input in a
NativeScript application, make use of the <TextField> tag like the following:

1 <TextField

2 text="First Name"

3 [(ngModel)]="firstname"></TextField>

The [(ngModel)] attribute seen above is identical to that which is found in an
Angular web application. It allows the binding of data between the UI and the
TypeScript paired to it.

It is often necessary to list large amounts of data within a mobile application. This
data is presented in what is called a <ListView>. These lists are populated from arrays
of strings or objects that are defined within the application TypeScript.

NativeScript: Mobile Applications for the Angular Developer 694

1 <ListView [items]="people">

2 <Template let-person="item">

3 <Label [text]="person.firstname"></Label>

4 </Template>

5 </ListView>

The above snippet will create a list from an array of objects called people. Each object
in the array will be called person and the firstname of each personwill be displayed
in a list row.

Again, there are many other components available, some not heard of in the land of
web development. However, they are all similar by design.

Just like with web components, NativeScript UI components don’t look attractive in
their vanilla state. They need to be themed and styled with some artistic flair.

Styling Components with CSS

There are a few options available when it comes to giving a NativeScript application
a boost in the attractiveness department, just as there is in web design.

NativeScript allows UI components to be styled with a CSS subset. To be clear, most
web CSS will work in NativeScript, but not everything. To change the font color of
a <Label> component, the following is an option:

1 .title {

2 color: #cc0000;

3 }

The class name can then be applied to the UI component in the same fashion as with
HTML.

Creating a custom stylesheet isn’t the only solution when it comes to making
a NativeScript application more attractive. When building a website, there are
frameworks such as Bootstrap that were designed to make life easier. We can
translate this same concept with NativeScript.

There is what is called NativeScript Theme, which is a package of CSS styles designed
to be easily added to any application.

Take the following action bar with button example:

NativeScript: Mobile Applications for the Angular Developer 695

1 <ActionBar title="NgBook"></ActionBar>

2 <StackLayout>

3 <Button text="Default UI"></Button>

4 </StackLayout>

The above code would generate a native, but very plain looking action bar with a
very plain looking button. On Android and iOS, it would look like the following:

NativeScript Basic CSS

This simple UI can be significantly improved by using NativeScript Theme. For
example, take the minor revisions to the code snippet found below:

1 <ActionBar title="NgBook" class="action-bar"></ActionBar>

2 <StackLayout>

3 <Button text="Themed UI" class="btn btn-primary"></Button>

4 </StackLayout>

A few class nameswere applied to the components giving them amuchmore pleasant
look and feel as demonstrated in the image below:

NativeScript Theme CSS

The naming conventions for the theme classes have a similar naming convention to
those found in the popular web frameworks.

NativeScript: Mobile Applications for the Angular Developer 696

Developing a Geolocation Based Photo
Application

Taking what we know about Angular, web development, and the NativeScript
mobile framework, we can apply it towards creating a native and functional mobile
application for both iOS and Android.

Much of what comes next will be a review of the Angular skills you already have,
but in a mobile example. The example application will use geolocation and the Flickr
API to show images that were captured near you.

NativeScript Photos Near Me

The application will have two pages that act as a master-detail interface meaning the
first page will list data and the second page will show more information about the
data selected from the first page.

The completed project can be found in the sample code under
code/nativescript/photos-near-me.

NativeScript: Mobile Applications for the Angular Developer 697

Creating a Fresh NativeScript Project

To get the most out of this demo, it would be good to start with a new project. As a
review to what was mentioned previously, a project can be created by executing the
following:

1 tns create GeoPhotoProject --ng

2 cd GeoPhotoProject

3 tns platform add android

4 tns platform add ios

The above commands will create an Angular NativeScript project called GeoPho-
toProject with the Android and iOS build platforms. To be able to build iOS
applications we must be using a Mac with Xcode installed.

The default project template will be a single page application, so we’ll have to add
more pages and configure the Angular Router.

Creating a Multiple Page Master-Detail Interface

The default project template uses the project’s app/app.component.html file as the
default page. This file will still be valuable in this project, but we’re going to create
two new pages.

Let’s create a few of the new components we’ll use by executing the following
commands to create necessary files and directories:

1 mkdir -p app/components/image-component

2 mkdir -p app/components/imagesList-component

3 touch app/components/image-component/image.component.ts

4 touch app/components/image-component/image.component.html

5 touch app/components/imagesList-component/imagesList.component.ts

6 touch app/components/imagesList-component/imagesList.component.html

We can also create these directories manually in our Explorer window, if the mkdir
or touch commands are not available in our command-line (or if we just feel more
comfortable in the UI).

NativeScript: Mobile Applications for the Angular Developer 698

The first page in our application flow will be the imagesList.component page to
display all the list of photos.

Let’s open the project’s app/components/imagesList-component/imagesList-com-
ponent.ts file and include the following basic class code:

1 import { Component, NgZone } from "@angular/core";

2 import { Router } from "@angular/router";

3

4 @Component({

5 selector: "ImagesListComponent",

6 templateUrl: "components/imagesList-component/imagesList.component.html"

7 })

8 export class ImagesListComponent {

9

10 public constructor(private zone: NgZone, private router: Router) { }

11

12 }

In the above code the ImagesListComponent class is being defined and various
Angular components are being imported and injected into the constructor method
in the usual method.

The UI that goes with the ImagesListComponent class is found in the app/com-
ponents/imageList-component/imagesList-component.html file. For now, let’s
update the file to contain following HTML markup:

1 <ActionBar title="Photos" class="action-bar"></ActionBar>

2 <StackLayout>

3 </StackLayout>

Before we add useful functionality to the first page of our application, let’s lay the
foundation to the second page and link them together.

Open the project’s app/components/image-component/image-component.ts file
and include the following TypeScript code:

NativeScript: Mobile Applications for the Angular Developer 699

1 import { Component, OnInit } from "@angular/core";

2 import { ActivatedRoute } from "@angular/router";

3

4 @Component({

5 templateUrl: "components/image-component/image.component.html"

6 })

7 export class ImageComponent implements OnInit {

8

9 public constructor(private activatedRoute: ActivatedRoute) { }

10

11 public ngOnInit() { }

12

13 }

In the above code the ImageComponent class is created and various Angular com-
ponents are imported and injected in the constructor method. The core difference
here, as of now, is the ngOnInit method which is going to be used to load data after
the page loads.

The UI that goes with the TypeScript code is found in the app/components/image-
component/image-component.html file and it will contain, for now, the following
HTML markup:

1 <ActionBar></ActionBar>

2 <StackLayout>

3 </StackLayout>

With the pages available, they need to be brought together for Angular routing. This
requires two things to happen. First, the routes need to be defined and second they
need to be included in the project’s @NgModule block.

Let’s create an app/app.routing.ts file in our project and include the following
routing configuration code:

NativeScript: Mobile Applications for the Angular Developer 700

code/nativescript/photos-near-me/app/app.routing.ts

1 import { ImagesListComponent } from "./components/imagesList-component/imagesList.compone\

2 nt";

3 import { ImageComponent } from "./components/image-component/image.component";

4

5 export const routes = [

6 { path: "", component: ImagesListComponent },

7 { path: "image-component/:photo_id", component: ImageComponent },

8];

9

10 export const navigatableComponents = [

11 ImagesListComponent,

12 ImageComponent

13];

In the above code, both the ImagesListComponent and ImageComponent classes were
imported. The routes define how to navigate to each of the classes and what data
can be passed. The ImagesListComponent has an empty path which represents the
default, or first page that loads when the application starts. The ImageComponent has
a path with one URL parameter which represent a piece of data that can be passed
from the ImagesListComponent page to the ImageComponent page.

Without getting too far ahead of ourselves, the photo_id represents the photo we
wish to load in the second page. This is a piece to the Flickr API.

The app/app.routing.ts file needs to be imported and added to the project’s @Ng-
Module block. In our project’s app/app.module.ts file and include the following
TypeScript code:

1 import { NativeScriptModule } from "nativescript-angular/platform";

2 import { NgModule } from "@angular/core";

3 import { NativeScriptFormsModule } from "nativescript-angular/forms";

4 import { NativeScriptHttpModule } from "nativescript-angular/http";

5 import { NativeScriptRouterModule } from "nativescript-angular/router";

6 import { registerElement } from "nativescript-angular/element-registry";

7

8 import { AppComponent } from "./app.component";

9 import { routes, navigatableComponents } from "./app.routing";

10

11 @NgModule({

12 imports: [

NativeScript: Mobile Applications for the Angular Developer 701

13 NativeScriptModule,

14 NativeScriptFormsModule,

15 NativeScriptHttpModule,

16 NativeScriptRouterModule,

17 NativeScriptRouterModule.forRoot(routes)

18],

19 declarations: [

20 AppComponent,

21 ...navigatableComponents,

22],

23 bootstrap: [AppComponent],

24 providers: []

25 })

26 export class AppModule {}

There is more setup in this file than what you’ll find in the default. To save us some
time we’re importing the NativeScriptFormsModule, NativeScriptHttpModule, and
NativeScriptRouterModule along with the routes and navigatableComponents vari-
ables that were defined in the previous file.

Each module is added to the imports array of the @NgModule block and the two page
classes found in the navigatableComponents variable are added to the declarations
array.

Even though the application doesn’t do much at the moment, it is linked together
and ready to go. Adding UI components and functionality will be explored later on.

Finally, we’ll need to add a place for our pages to render via our routes. In our main
app component in app/app.component.html, let’s add the <page-router-outlet/>

markup to tell Angular where to render our subroutes. Since we don’t have any
common views between views, can replace all of the content with this markup:

1 <page-router-outlet></page-router-outlet>

Creating a Flickr Service for Obtaining Photos and Data

Flickr will be a critical part of this application. Instead of calling the Flickr API
directly in each of the pages we wish to use it, the better approach would be to
create an Angular service, also known as a provider.

NativeScript: Mobile Applications for the Angular Developer 702

In a Flickr provider we can add logic to query for photos based on latitude and
longitude information as well as get information about particular photos.

Before designing this provider it is a good idea to create a global configuration file
for the application. This will prevent hard coded URL values, amongst other things,
in the application.

Let’s create a app/config.ts file and include the following:

1 export const Config = {

2 Flickr: {

3 CLIENT_ID: "FLICKR_CLIENT_ID_HERE",

4 API_URL: "https://api.flickr.com/services/rest/?"

5 }

6 };

Before using the Flickr API, an account needs to be created to obtain a client id. We’ll
head to https://www.flickr.com/services/api/¹⁶¹ and create an account.

¹⁶¹https://www.flickr.com/services/api/

https://www.flickr.com/services/api/
https://www.flickr.com/services/api/

NativeScript: Mobile Applications for the Angular Developer 703

Flickr will create a client_id that will be unique to our application. The value of the
FLICKR_CLIENT_ID_HERE in our app/config.ts file.

With the configuration file created, we need to define a data model for the Flickr
responses. While not absolutely necessary, it does create a more maintainable
TypeScript application.

Let’s create the app/models directory, if it does not already exist:

1 mkdir app/models

Create an app/models/getInfoResponse.ts file and include the following TypeScript
code:

NativeScript: Mobile Applications for the Angular Developer 704

code/nativescript/photos-near-me/app/models/getInfoResponse.ts

1 interface Owner {

2 username: string;

3 realname: string;

4 }

5

6 export class GetInfoResponse {

7 owner: Owner;

8 farm: number;

9 server: number;

10 secret: string;

11 id: number;

12 url: string;

13 }

The above represents the data that is returned from the Flickr flickr.photos.getInfo
RESTful endpoint. The data makes it possible to obtain an image file along with
holding information about that image file.

The second model we need is for Flickr search data. Create an app/models/photo-
sSearchResponse.ts file with the following TypeScript code:

code/nativescript/photos-near-me/app/models/photosSearchResponse.ts

1 export class PhotosSearchResponse {

2 id: string;

3 owner: string;

4 secret: string;

5 server: number;

6 title: string;

7 latitude: string;

8 longitude: string;

9 datetaken: string;

10 url_t: string;

11 url_m: string;

12 url_q: string;

13 url_n: string;

14 distance: string;

15

16 constructor() {

17 this.url_n = " ";

18 }

19 }

NativeScript: Mobile Applications for the Angular Developer 705

The above model holds useful information such as the photo id, the owner, and
geolocation information all useful when discovering images and displaying them
on the second page of the application.

With the data models created, we can now create the Flickr service. Let’s create a file
at app/services/flickr.service.ts in the project.

1 mkdir app/services

2 touch app/services/flickr.service.ts

We’ll start with this foundation, in the flickr.service.ts file:

1 import { Component, Injectable } from "@angular/core";

2 import { Http, Response } from "@angular/http";

3 import { Observable } from "rxjs/Rx";

4 import { Config } from "../app.config";

5 import { PhotosSearchResponse } from "../models/photosSearchResponse";

6 import { GetInfoResponse } from "../models/getInfoResponse";

7 import "rxjs/add/operator/map";

8

9 @Injectable()

10 export class FlickrService {

11

12 public constructor(private http: Http) { }

13

14 public photosSearch(lat: number, lon: number): Observable<PhotosSearchResponse[]> { }

15

16 public getPhotoInfo(photoId: number): Observable<GetInfoResponse> { }

17

18 }

Both the photosSearch and getPhotoInfo functions return observables which are
streams of data obtained by HTTP requests to the Flicker API.

The photosSearch function will take a latitude and longitude and apply it towards
Flickr’s API like follows:

NativeScript: Mobile Applications for the Angular Developer 706

code/nativescript/photos-near-me/app/services/flickr.service.ts

14 public photosSearch(lat: number, lon: number): Observable<PhotosSearchResponse[]> {

15 let url = `${Config.Flickr.API_URL}method=flickr.photos.search&api_key=${Config.F\

16 lickr.CLIENT_ID}&content_type=1&lat=${lat}&lon=${lon}&extras=url_q,geo&format=json&nojson\

17 callback=1`;

18

19 return this.http.get(url)

20 .map(response => response.json().photos.photo)

21 .catch(error => Observable.throw(error));

22 }

AnHTTP request is made per the Flickr API documentation. Using RxJS, the response
of the request is transformed using the map operator to be of type PhotosSearchRe-
sponse. If there is an error in the response, it will be caught through the normal http
promise error chain. Just like normal Angular, our HTTP request won’t execute until
the observable is subscribed.

The getPhotoInfo method will take a photo id, probably from the result returned in
the previous photosSearch function:

code/nativescript/photos-near-me/app/services/flickr.service.ts

22 public getPhotoInfo(photoId: number): Observable<GetInfoResponse> {

23 let url = `${Config.Flickr.API_URL}method=flickr.photos.getInfo&api_key=${Config.\

24 Flickr.CLIENT_ID}&photo_id=${photoId}&format=json&nojsoncallback=1`;

25

26 return this.http.get(url)

27 .map(response => response.json().photo)

28 .catch(error => Observable.throw(error));

29 }

Like with the photosSearch function, the getPhotoInfo function makes a HTTP
request against the Flickr API and parse the response using RxJS.

Before the Flickr provider can be used throughout the application, it must be added
to the @NgModule block similarly to how the application pages were added.

Inside the project’s app/app.module.ts file, we need to import the Flickr service must
be imported and then add it to the providers array in the @NgModule block:

NativeScript: Mobile Applications for the Angular Developer 707

1 import { FlickrService } from "./services/flickr.service";

2

3 @NgModule({

4 // ...

5 providers: [FlickrService]

6 })

7 ...

The Flickr provider can now be used in the various pages of the application.

Creating a Service for Calculating Device Location and
Distance

Up until now, all the TypeScript has been general to Angular and with nothing to do
with NativeScript. This geolocation application will have dependence on the location
of the Android or iOS device so NativeScript must be used to natively interface with
the GPS components.

Because GPS will be used throughout the application, it is a good idea to create an
Angular provider for it. This will keep the code clean and maintainable.

Before creating the provider, a JavaScript library must be installed into the project.

1 npm install humanize-distance --save

The humanize-distance library allows us to calculate the distance between two
latitude and longitude locations. This will be particularly useful when checking our
user’s device location versus that of a photo returned from Flickr.

We’ll also need to include a nativescript library called nativescript-geolocation

using the tns plugin command:

1 tns plugin add nativescript-geolocation

Let’s create another service called the geolocation.service:

NativeScript: Mobile Applications for the Angular Developer 708

1 touch app/services/geolocation.service.ts

In this new file, let’s include the following foundation code:

1 import { Injectable } from "@angular/core";

2 import * as geolocation from "nativescript-geolocation";

3 var humanizeDistance = require("humanize-distance");

4

5 @Injectable()

6 export class GeolocationService {

7

8 public latitude: number;

9 public longitude: number;

10

11 public getLocation(): Promise<any> { }

12

13 public getDistanceFrom(latitude: number, longitude: number): string { }

14

15 private _getCurrentLocation(): Promise<any> { }

16

17 }

This providerwill be injectable into the application pages. It will use the nativescript-
geolocation plugin which interfaces with native Android and iOS GPS code. The
humanize-distance library is imported differently because it is JavaScript rather than
TypeScript.

code/nativescript/photos-near-me/app/services/geolocation.service.ts

35 private _getCurrentLocation(): Promise<any> {

36 return new Promise(

37 (resolve, reject) => {

38 geolocation.getCurrentLocation({

39 desiredAccuracy: Accuracy.high,

40 timeout: 20000

41 })

42 .then(location => {

43

44 this.latitude = location.latitude;

45 this.longitude = location.longitude;

46

47 resolve();

48 })

NativeScript: Mobile Applications for the Angular Developer 709

49 .catch(error => {

50 reject(error);

51 })

52 }

53);

54 }

Using the geolocation plugin we can get the current longitude and latitude of the
device GPS. This is an asynchronous request and must be added to a JavaScript
promise or observable. The result of _getCurrentLocation will be a promise of any
data.

Not all devices have GPS hardware and both Android and iOS require permissions
to use location services. Because of this a few checks must be put into place.

code/nativescript/photos-near-me/app/services/geolocation.service.ts
12 public getLocation(): Promise<any> {

13 return new Promise(

14 (resolve, reject) => {

15 if (!geolocation.isEnabled()) {

16 geolocation.enableLocationRequest(true).then(() => {

17 this._getCurrentLocation()

18 .then(resolve)

19 .catch(reject);

20 });

21 }

22 else {

23 this._getCurrentLocation()

24 .then(resolve)

25 .catch(reject);

26 }

27 }

28);

29 }

Using the getLocation method a check to see if the geolocation service is enabled is
made. If it is not enabled, a request to enable it will bemade. Provided that everything
checks out, a call to the other _getCurrentLocation function will be made. This also
applies if the geolocation service is enabled already.

With the device location in hand, a distance can be calculated from a different
location, more than likely the picture distance.

NativeScript: Mobile Applications for the Angular Developer 710

code/nativescript/photos-near-me/app/services/geolocation.service.ts

31 public getDistanceFrom(latitude: number, longitude: number): string {

32 return humanizeDistance({ latitude: latitude, longitude: longitude }, { latitude:\

33 this.latitude, longitude: this.longitude }, 'en-US', 'us');

34 }

The getDistanceFrom method will use the humanize-distance library to get us a
better distance format like kilometers, miles, etc.

Like with the Flickr provider, the geolocation provider needs to be added the project’s
@NgModule block. Let’s open our project’s app/app.module.ts file and include the
following lines:

1 import { GeolocationService } from "./services/geolocation.service";

2

3 @NgModule({

4 // ...

5 providers: [FlickrService, GeolocationService]

6 })

7 ...

Essentially, we’re importing the provider and adding it to the providers array of the
@NgModule block. At this point the geolocation provider can be used throughout the
application.

Including Mapbox Functionality in the NativeScript
Application

As of right now neither of the two application routes have any functionality that is
particularly useful. The application has two very useful providers, but they aren’t
being used yet.

Since geolocation will be used, it makes sense to present a map. There are many
options when it comes to maps. Two popular map solutions are Mapbox and Google
Maps. For this example Mapbox renders itself the most convenient.

To install Mapbox in a NativeScript application, execute the following:

NativeScript: Mobile Applications for the Angular Developer 711

1 tns plugin add nativescript-mapbox

The Mapbox plugin for NativeScript has its own set of available HTML markup
tags. To expose these tags in an Angular application, they must be registered in the
project’s app/app.module.ts file like so:

1 import { registerElement } from "nativescript-angular/element-registry";

2

3 var map = require("nativescript-mapbox");

4 registerElement("Mapbox", () => map.Mapbox);

Once registered, the <Mapbox> tag can be used within HTML files. However, Mapbox
requires a valid API token in order to be used.

Register for an API token via the Mapbox Developers Page¹⁶².

Let’s store the value of the mapbox access_token open the project’s app/config.js
file. This is the same file where we added the Flickr API information. Modify this
file to look like the following:

¹⁶²https://www.mapbox.com/developers/

https://www.mapbox.com/developers/
https://www.mapbox.com/developers/

NativeScript: Mobile Applications for the Angular Developer 712

1 export const Config = {

2 Flickr: {

3 CLIENT_ID: "FLICKR_CLIENT_ID_HERE",

4 API_URL: "https://api.flickr.com/services/rest/?"

5 },

6 MapBox: {

7 ACCESS_TOKEN: "MAPBOX_ACCESS_TOKEN_HERE"

8 }

9 };

The Mapbox API token will be obtained similarly to how the Flickr API token was
obtained within the application. While Mapbox hasn’t been added to the UI or the
page logic, it is not able to be added.

Implementing the First Page of the Geolocation
Application

There was a lot of preparation that went into this project so far, but each of the pages
are now ready to be crafted.

Open the app/components/imageList-component/imageList.component.ts file that
was created earlier. We added foundation, but now it is time to finish it with
functional logic.

1 import { Component, NgZone } from "@angular/core";

2 import { FlickrService } from "../../services/flickr.service";

3 import { PhotosSearchResponse } from "../../models/photosSearchResponse";

4 import { Router } from "@angular/router";

5 import { GeolocationService } from "../../services/geolocation.service";

6 import { Config } from "../../app.config";

7

8 @Component({

9 selector: "ImagesListComponent",

10 templateUrl: "components/imagesList-component/imagesList.component.html"

11 })

12 export class ImagesListComponent {

13

14 private mapbox: any;

15 public mapboxKey: string;

16 public photos: PhotosSearchResponse[];

17

NativeScript: Mobile Applications for the Angular Developer 713

18 public constructor(private flickrService: FlickrService, private geolocationService: \

19 GeolocationService, private zone: NgZone, private router: Router) { }

20

21 public onMapReady(args) { }

22

23 public dropMarkers() { }

24

25 public centerMap(args: any) { }

26

27 public showPhoto(args: any) { }

28

29 public loadPhotos() { }

30

31 }

In the above TypeScript file, each of the services and models that were previously
created are now being imported into the page. The ImagesListComponent has a
private variable which will hold the Mapbox and several public variables that will
be bound to the UI.

In the constructor method each of the two providers are injected so they can be
used throughout the current page of the application.

In a typical Angular application an OnInit would be used after the constructor

method has executed. To prevent a race condition, this page will not make use of it.
Instead, an onMapReady method will be created and used via the HTML markup. In
other words, when theMapbox thinks it’s ready, this onMapReadymethod will trigger.

code/nativescript/photos-near-me/app/components/imagesList-component/images-
List.component.ts

22 public onMapReady(args) {

23 this.mapbox = args.map;

24 this.geolocationService.getLocation().then(() => {

25 this.loadPhotos().subscribe(

26 photos => {

27 this.photos = photos.map((photo) => {

28 photo.distance = this.geolocationService.getDistanceFrom(

29 parseFloat(photo.latitude),

30 parseFloat(photo.longitude));

31 return photo;

32 });

33 this.dropMarkers();

34 this.mapbox.setCenter({

NativeScript: Mobile Applications for the Angular Developer 714

35 lat: this.geolocationService.latitude,

36 lng: this.geolocationService.longitude,

37 animated: true

38 });

39 },

40 error => console.log(error));

41 });

42 }

Once triggered, the mapbox variable will be set with the current Mapbox. Using
the geolocation service, the device GPS location is obtained and Flickr photos near
the location are queried. A humanized distance is calculated for each of the photos
retrieved from the API call.

The photos obtained from the Flickr API are stored in the photos array at which
point they are placed as markers on the map using the dropMarkers method. At the
end of the initialization period the map is centered on the devices location.

The dropMarkers method called from the onMapReady looks like the following:

code/nativescript/photos-near-me/app/components/imagesList-component/images-
List.component.ts

44 public dropMarkers() {

45 let markers = this.photos.map((photo: PhotosSearchResponse, index: number) => {

46 return {

47 lat: photo.latitude,

48 lng: photo.longitude,

49 onTap: () => {

50 this.zone.run(() => {

51 this.showPhoto({ index: index });

52 });

53 }

54 }

55 });

56 this.mapbox.addMarkers(markers);

57 }

In the above method, the photos array is recreated through a JavaScript map and
stored as markers. The new objects found in the array include the longitude and
latitude of the photo and a tap event, showPhoto, which will navigate to the next

NativeScript: Mobile Applications for the Angular Developer 715

page. To keep everything in sync, the showPhoto method must be added within the
Angular zone.

The markers array is added to the Mapbox for display on the soon to be created map
component.

code/nativescript/photos-near-me/app/components/imagesList-component/images-
List.component.ts

68 public showPhoto(args: any) {

69 let photo = this.photos[args.index];

70 this.router.navigate(["/image-component", photo.id]);

71 }

The route to the second page of the application requires a photo id. This information
is obtained from a specific photo that was selected. Remember, the photo information
was added within the dropMarkers method.

code/nativescript/photos-near-me/app/components/imagesList-component/images-
List.component.ts

73 public loadPhotos() {

74 return this.flickrService.photosSearch(

75 this.geolocationService.latitude,

76 this.geolocationService.longitude);

77 }

The loadPhotos method was used in the onMapReady method for subscribing to the
Flickr observable. It was created to make the lines of the file shorter and easier to
read.

The final method of the first application page, centerMap, will center the map on a
particular photo:

NativeScript: Mobile Applications for the Angular Developer 716

code/nativescript/photos-near-me/app/components/imagesList-component/images-
List.component.ts

59 public centerMap(args: any) {

60 let photo = this.photos[args.index];

61 this.mapbox.setCenter({

62 lat: parseFloat(photo.latitude),

63 lng: parseFloat(photo.longitude),

64 animated: false

65 });

66 }

So what does the UI markup look like for the TypeScript logic that was just
implemented? Open the project’s app/components/imageList-component/image-
List.component.html file. The UI is composed of two vertical sections, a list of
pictures which resides on the upper level and a map which resides on the lower
level.

1 <ActionBar title="Photos" class="action-bar"></ActionBar>

2 <StackLayout>

3 <GridLayout columns="*" rows="*, 280">

4 <ListView [items]="photos" row="0" col="0" class="list-group" (itemTap)="centerMa\

5 p($event)">

6 </ListView>

7 <ContentView row="1" col="0">

8 </ContentView>

9 </GridLayout>

10 </StackLayout>

In the above markup a GridLayoutwill allow for vertical sections, hence the two row
values. The asterisk in the columns means that each row will take the full width of
the screen. Since there is an asterisk and numeric value in the rows, the bottom row
will have a height of 280 and the top row will take all remaining part of the screen.

The ListView is setup to iterate over each element in the public photos array. When
a row is tapped, the centerMap method is called to position the map over the photo
that was clicked. The ContentView is the second row and it will hold the map.

The ListView is incomplete though. It should really look like the following:

NativeScript: Mobile Applications for the Angular Developer 717

1 <ListView [items]="photos" row="0" col="0" class="list-group" (itemTap)="centerMap($event\

2)">

3 <template let-item="item">

4 <GridLayout columns="auto, *" rows="auto" class="list-group-item">

5 <Image [src]="item.url_q" width="50" height="50" col="0" class="thumb img-rou\

6 nded"></Image>

7 <StackLayout row="0" col="1">

8 <Label [text]="item.distance + ' away'" class="list-group-item-heading"><\

9 /Label>

10 <Label [text]="item.title" class="list-group-item-text" textWrap="true"><\

11 /Label>

12 </StackLayout>

13 </GridLayout>

14 </template>

15 </ListView>

Each row of the ListView will have two columns and an automatically sized row
height. The first column of the list row will be the image returned from the Flickr
API and the second column will have stacked text which includes the photo title and
the humanized distance.

1 <ContentView row="1" col="0">

2 <Mapbox

3 accessToken="{{ mapboxKey }}"

4 mapStyle="streets"

5 zoomLevel="17"

6 hideLogo="true"

7 showUserLocation="true"

8 (mapReady)="onMapReady($event)">

9 </Mapbox>

10 </ContentView>

The Mapbox calls the onMapReady function and uses the mapboxKey found in the
configuration file. Other default properties are used as well.

The first, and default, page of the application is now complete. However, a page for
showing the picture still needs to be completed. This is the page navigated to after
tapping a marker on the map.

NativeScript: Mobile Applications for the Angular Developer 718

Implementing the Second Page of the Geolocation
Application

The second and final page of the application will show an image based on what
was selected in the previous page. Open the project’s app/components/image-
component/image.component.ts file and include the following TypeScript code:

1 import { Component, OnInit } from "@angular/core";

2 import { ActivatedRoute } from "@angular/router";

3 import { FlickrService } from "../../services/flickr.service";

4

5 @Component({

6 templateUrl: "components/image-component/image.component.html"

7 })

8 export class ImageComponent implements OnInit {

9

10 public url: string;

11

12 public constructor(private activatedRoute: ActivatedRoute, private flickrService: Fli\

13 ckrService) { }

14

15 public ngOnInit() { }

16

17 public getPhoto(photoId: number) { }

18

19 }

The Flickr provider was imported to what was created previously and it is injected
into the constructormethod. The url variable will hold the image URL that will be
bound to and presented in the UI.

NativeScript: Mobile Applications for the Angular Developer 719

code/nativescript/photos-near-me/app/components/image-component/image.component.ts
14 public ngOnInit() {

15 this.activatedRoute.params.subscribe(params => {

16 let photoId = params["photo_id"];

17 this.getPhoto(photoId);

18 });

19 }

When this page is initialized, the ngOnInit method will obtain the URL parameter
and pass it to the getPhoto message.

code/nativescript/photos-near-me/app/components/image-component/image.component.ts
21 public getPhoto(photoId: number) {

22 this.flickrService.getPhotoInfo(photoId).subscribe(

23 photo => {

24 this.url = `https://farm${photo.farm}.staticflickr.com/${photo.server}/${\

25 photo.id}_${photo.secret}_n.jpg`;

26 },

27 error => console.log(error)

28);

29 }

After making a request to the Flickr API with the Flickr provider, the public url

variable will be filled.

With the logic in place, open the project’s app/components/image-component/im-
age-component.html file and include the following markup:

1 <ActionBar></ActionBar>

2 <StackLayout>

3 <Image [src]="url" width="360" height="360"></Image>

4 </StackLayout>

The Image tag will present an image based on the url that was populated in the
TypeScript code. Within the action bar, there will be a back button to navigate to the
previous page.

Try it out!

Now that we have the basic structure for our app in place, try running:

NativeScript: Mobile Applications for the Angular Developer 720

1 tns livesync android --emulator --watch

2 # or

3 tns livesync ios --emulator --watch

When you’re ready to create a build call:

1 tns build android

2 # or

3 tns build ios

NativeScript for Angular Developers

NativeScript makes it very easy for Angular developers to develop native mobile
applications that use native device features, SDKs, and concepts. As technology
evolves for the best, the need to know Java or Objective-C is dwindling in favor
of these cross platform mobile development frameworks.

Obviously there is a lot more to learn about using NativeScript than we can cover in
just this first chapter. Checkout these resources:

• Official NativeScript Site¹⁶³
• Official NativeScript Docs¹⁶⁴
• NativeScript App Examples¹⁶⁵
• NativeScript on StackOverflow¹⁶⁶

¹⁶³https://www.nativescript.org/
¹⁶⁴https://docs.nativescript.org/
¹⁶⁵https://www.nativescript.org/app-samples-with-code
¹⁶⁶http://stackoverflow.com/questions/tagged/nativescript

https://www.nativescript.org/
https://docs.nativescript.org/
https://www.nativescript.org/app-samples-with-code
http://stackoverflow.com/questions/tagged/nativescript
https://www.nativescript.org/
https://docs.nativescript.org/
https://www.nativescript.org/app-samples-with-code
http://stackoverflow.com/questions/tagged/nativescript

Changelog
This document highlights the changes for each version of ng-book. You can find this
document on the web at: https://www.ng-book.com/2/p/Changelog/¹⁶⁷.

Be sure to check there to ensure that you have the latest revision.

Revision 76 - 2020-02-12

Updates the book and code to Angular 9 version angular-9.0.0.

• Chapter “First App”
– Various bug fixes

To learn how to upgrade to Angular 9, see the official documentation here¹⁶⁸

Revision 75 - 2019-12-13

• Fixes redux-chat/tutorial/ to latest versions of RxJS by Contributor Robbie
Smith

Revision 74 - 2019-05-30

Updates the book and code to Angular 8 version angular-8.0.0.

Revision 73 - 2019-01-08

Updates the book and code to Angular 7 version angular-7.2.0.

¹⁶⁷https://www.ng-book.com/2/p/Changelog/
¹⁶⁸https://next.angular.io/guide/updating-to-version-9

https://www.ng-book.com/2/p/Changelog/
https://next.angular.io/guide/updating-to-version-9
https://www.ng-book.com/2/p/Changelog/
https://next.angular.io/guide/updating-to-version-9

Changelog 722

Revision 72 - 2018-12-12

Updates the book and code to Angular 7 version angular-7.1.2.

Revision 71 - 2018-10-23

Updates the book and code to Angular 7 version angular-7.0.0.

• Chapter “First App”
– Various bug fixes

• Chapter: “Forms”
– Overhaul to be consistent with version 7

Revision 70 - 2018-09-13

Restores the “HTTP” Chapter

Revision 69 - 2018-09-08

Updates the book and code to Angular 6 version angular-6.0.5.

Bug Fixes

• Chapter: “First App”
– Previous versions instructed gave the command to build as: ng build

--target=production --base-href / however, the build command was
changed to: ng build --prod

– Fixed the app.component.html input fields to have the id attribute for
better rendering. Thanks, P. Colagrosso!

– Fixed some confusing language about titles. Thanks, Brother B!
• Chapter: “How Angular Works”

– Removed a note about using selectors in a div tag, as it requires extra
configuration. Thanks, VC!

– Adds export to the early AppComponent examples because it’s easy to miss
later. Thanks, Brother B!

• Chapter: “Routing”
– Fixed some typos reported by A. Smith. Thanks, A!

Changelog 723

Revision 68 - 2018-05-08

Updates the book and code to Angular 6 version angular-6.0.0.

Revision 67 - 2018-01-17

Updates the book and code to Angular 5 version angular-5.2.0.

Revision 66 - 2017-11-14

• “HTTP” - Updates the chapter to use HttpClient instead of Http
• “Testing” - Updates the chapter to use HttpClient, matching the “HTTP”
chapter

Revision 65 - 2017-11-01

Updates the book and code to Angular 5 version angular-5.0.0.

Revision 64 - 2017-09-15

Updates the book and code to Angular 5 version angular-5.0.0-beta.6.

• “Routing” - Fixes Spotify API key issue

Revision 63 - 2017-08-02

Updates the book and code to Angular 4 version angular-4.3.2.

Revision 62 - 2017-06-23

• “How to Read This Book” - Fixed typos via Travas N.
• “First App” - Fixed typos via Travas N.
• “NativeScript” - Fixed typos via Travas N.
• “Advanced Components” - Fixed typos via Travas N.
• “Redux” - Fixed typos via Travas N.
• “Testing” - Fixed typos via Travas N.

Changelog 724

Revision 61 - 2017-05-24

• “How to Read This Book” - Fixed typo reported by Daniel R.
• “First App” - Fixed typos reported by Daniel R.
• “TypeScript” - Fixed typo reported by Daniel R.
• “Advanced Components” - Fixed typos reported by Daniel R.
• “RxJS” - Fixed dead link to RxMarbles reported by Daniel R., fixed typos by
Travas N.

• “Redux” - Fixed typos via Travas N.
• “Routing” - Fixed typos via Travas N.

Revision 60 - 2017-04-27

Updates the book and code to Angular 4 version angular-4.1.0.

Revision 59 - 2017-04-07

• “First App” - Reddit example, added ids to the input tags and other typos -
Reported by Alexey A., Damien W.

• “How Angular Works” - Fixed typos reported by Richard M.
• “Built-in Components” - Fixed typos reported by Oleksij L.
• “Advanced Components” - Typos reported by Tom G. and Arshaan B.
• “HTTP” - Typos reported by Arshaan B.
• “Dependency Injection” - Fixes wrong code example reported by Emin L.
• “Redux” - Fixes old reference to OpaqueToken (now InjectionToken), Fixes
typos reported by Arshaan B.

• “Routing” - Fixed URLs that pointed to localhost:8080 instead of port 4200 -
Reported by Arshaan B.

• “RxJS” - Fixes a confusing hypothetical subscription reported by Arshaan B.
• “Forms” - Fixes the demo which was using the same component and typos -
reported by Christopher S., Richard M.

• Fixed remaining next() -> emit() for EventEmitter
• Replaced “parenthesis” with “parentheses” when it was intended. Special thanks
to Richard M. for pointing this out

• Use consistent casing for “JavaScript” everywhere - reported by Damien W.

Changelog 725

Revision 58 - 2017-03-24

Updates the book and code to Angular 4 version angular-4.0.0.

Revision 57 - 2017-03-23

Updates the book to Angular 4 version angular-4.0.0.rc6.

• Fixes the SpyObject in the music/routing test.

Revision 56 - 2017-03-22

Updated the entire book to use Angular CLI, the new styleguide for folder layout,
and pass linting.

Updated code to angular-2.4.10.

This includes updates to:

• “Forms”
• “Advanced Components”
• “HTTP”
• “Routing”
• “Testing”
• “RxJS Intro”
• “RxJS Chat”
• “Redux Intro”
• “Redux Chat” “ “NgUpgrade Conversion”

Revision 55 - 2017-03-17

• Rewrote “Dependency Injection” Chapter and updated it to use angular-cli

and conform to style guide. Moved it earlier in the book.
• Updated “Built-in Directives” Chapter to use angular-cli and conform to style
guide

• “Writing your First Angular Web Application”, clarified thanks to input from
Zach S., Blair A., Leandro A.

Changelog 726

Revision 54 - 2017-03-10

• Book updated to angular-2.4.9

• Changed the use of the word annotation to decorator, across the board
• “Dependency Injection” added @Injectable description and fixed typos.
• Webpack CSS fix in many chapters reported by Daniel W.
• Pointed out where Bootstrap is used: HTTP, Routing, Introduction to Redux
with TypeScript, Data Architecture with Observables

• Added dot-notation example as recommended by Luis M. T. L.
• Changed link to AbstractControl

• Added link regarding two-way binding as recommended by Tom G.
• “Writing your First Angular 2WebApplication”, clarified as reported by Brother
Bill, Terry W., Rob D., Robert S., and Aaron K.

• “Built-in Directives”, clarified as reported by Brother Bill
• “Forms”, typo reported by Robert S. and Andrew B.
• “HTTP”, typo reported by Brother Bill
• “Routing”, clarified as reported by Brother Bill and Daniel F.
• “TypeScript”, bug reported by Willemhein T. and Shane G.
• Changed EventEmitter’s depreciated next() to emit(), reported by Adam Beck

Revision 53 - 2017-03-01

• Added a section on deployment to the first chapter
• Updated “How Angular Works” to use @angular/cli
• Updated @angular/cli to version 1.0.0-rc.0

• Added a note about how to run the examples in “Built-in Directives”
• Updated “How to Read This Book” with a note about each project’s README.md

Revision 52 - 2017-02-22

• Added “How to Read This Book”
• Updated angular-cli to use @angular/cli package
• Clarity updates to the first chapter
• Book updated to angular-2.4.8

Changelog 727

Revision 51 - 2017-02-14

Fixes code formatting bugs in the first chapter

Revision 50 - 2017-02-10

Book updated to angular-2.4.7

Revision 49 - 2017-01-18

Minor fixes

Revision 48 - 2017-01-13

Added chapter on building native mobile apps with NativeScript and Angular

Revision 47 - 2017-01-06

Fixes missing images in Built-in Directives

Revision 46 - 2017-01-03

Book up to date with angular-2.4.0

• Added Protractor E2E tests for every project
• “Routing”, Fixed a child route pathMatch ambiguity

Revision 45 - 2016-12-05

Book up to date with angular-2.3.0-rc.0

Changelog 728

Revision 44 - 2016-11-17

Fixed typos in chapters:

• “Writing your First Angular 2 Web Application”, reported by Mike B., Steve A.,
Terry W., Alessandro C., Andrew Blair

• “TypeScript”, reported by Kevin D.
• “How Angular Works”, reported by Kevin D. and Jason T.
• “Forms”, reported by Kevin D.
• “HTTP”, reported by Kevin D.
• “Routing”, reported by Kevin D.
• “Advanced Components”, reported by Kevin D.
• “Built-in Directives”, reported by Jason T. and Farooq A.
• “Dependency Injection”, reported by Kevin D.
• “Testing”, reported by Kevin D.
• “Converting an Angular 1 App to Angular 2”, reported by Kevin D.

Revision 43 - 2016-11-08

Book up to date with angular-2.2.0-rc.0

Revision 42 - 2016-10-14

Entire book up to date with angular-2.1.0 Bonus video content and sample app
completed (premium package users)

• Chapter “Built-in Components” renamed to “Built-in Directives”
• Service dependencies made private, reported by Jamie B.

Fixed typos and clarified in chapters:

• “How Angular Works”, reported by kbiesbrock
• “Converting to ng2”, reported by Dilip S.
• “Built-in Directives”, reported by Pieris C.
• “Dependency Injection”, reported by Tim P.
• “Routing”, reported by Kashyap M
• “Advanced Components”, reported by Kashyap M., by Justin B. and many by
Németh T.

Changelog 729

Revision 41 - 2016-09-28

Rewrote the first chapter to use ng-cli and the new styleguide.

• “First App” Chapter:
– Split files into style-guide friendly templates and components
– Fixed a bunch of typos reported by David S., and Luis H., Jan L., Aaron
Spilman

• “HTTP” Chapter - fixed typos - Thanks Jim H.!

Revision 40 - 2016-09-20

Entire book up to date with angular-2.0.0 final!

Revision 39 - 2016-09-03

Entire book up to date with angular-2.0.0-rc.6

Revision 38 - 2016-08-29

Entire book up to date with angular-2.0.0-rc.5

• Entire book changes:
– Upgraded every example to use NgModules
– Upgraded tests to use TestBuilder

Revision 37 - 2016-08-02

New chapter: Intermediate Redux in Angular 2!

Bugfixes:

• ts-cli -> ts-node - Thanks Tim. P

Changelog 730

Revision 36 - 2016-07-20

New chapter: Redux in TypeScript and Angular 2!

• Re-ordered chapters

Revision 35 - 2016-06-30

Book and code up to date with angular-2.0.0-rc.4

• Routing upgraded to new router
• Forms upgraded to new forms library
• Testing chapter updated to match new routing and forms

Revision 34 - 2016-06-15

Book and code up to date with angular-2.0.0-rc.2

Note: still using router-deprecated at this time.

Revision 33 - 2016-05-11

New chapter: Dependency Injection!

Revision 32 - 2016-05-06

Entire book up to date with angular-2.0.0-rc.1!

• Entire book changes:
– Renamed all imports to match the new packages (see below)
– Upgrade to typings (removes all tsd references)
– Directive local variables now use let instead of #. E.g. *ngFor="#item in

items" becomes *ngFor="let item in items"

Changelog 731

– In projects that use System.js, create an external file for configuration
(instead of writing it in the index.html <script> tags

• “Testing” Chapter:
– injectAsync has been removed. Instead you use async and inject together,
both come from @angular/core/testing

• “Advanced Components” Chapter:
– In ngBookRepeat, when creating a child view manually with createEmbed-

dedView, the context is passed as the second argument (instead of calling
setLocal).

Details:

Renamed libraries:

• angular2/core -> @angular/core

• angular2/compiler -> @angular/compiler

• angular2/common -> @angular/common

• angular2/platform/common -> @angular/common

• angular2/common_dom -> @angular/common

• angular2/platform/browser -> @angular/platform-browser-dynamic

• angular2/platform/server -> @angular/platform-server

• angular2/testing -> @angular/core/testing

• angular2/upgrade -> @angular/upgrade

• angular2/http -> @angular/http

• angular2/router -> @angular/router

• angular2/platform/testing/browser -> @angular/platform-browser-dynamic/testing

Revision 31 - 2016-04-28

All chapters up to date with angular-2.0.0-beta.16

Revision 30 - 2016-04-20

All chapters up to date with angular-2.0.0-beta.15

Changelog 732

Revision 29 - 2016-04-08

All chapters up to date with angular-2.0.0-beta.14

Revision 28 - 2016-04-01

All chapters up to date with angular-2.0.0-beta.13 - (no joke!)

Revision 27 - 2016-03-25

All chapters up to date with angular-2.0.0-beta.12

Revision 26 - 2016-03-24

Advanced Components chapter added!

Revision 25 - 2016-03-21

All chapters up to date with angular-2.0.0-beta.11

Note: angular-2.0.0-beta.10 skipped because the release had a couple of bugs.

Revision 24 - 2016-03-10

All chapters up to date with angular-2.0.0-beta.9

Revision 23 - 2016-03-04

All chapters up to date with angular-2.0.0-beta.8

• “Routing” Chapter
– Fixed a few typos - Németh T.
– Fixed path to nested routes description - Dante D.

• “First App” Chapter

Changelog 733

– Fixed typos - Luca F.
– Removed unnecessary import of NgFor - Neufeld M.

• “Forms” Chapter
– Typos - Miha Z., Németh T.

• “How Angular Works” Chapter
– Typos - Koen R., Jeremy T., Németh T.

• “Typescript” Chapter
– Typos - Németh T.

• “Data Architecture with RxJS” Chapter
– Typos - Németh T.

• “HTTP” Chapter
– Typos - Németh T.

• “Testing” Chapter
– Typos - Németh T.

Revision 22 - 2016-02-24

• r20 & beta.6 introduced some bugs regarding the typescript compiler and new
typing files that were required to be included. This revision fixes those bugs

• Added a note about how to deal with the error: error TS2307: Cannot find

module 'angular2/platform/browser'

• “First App” Chapter - added a tiny note about the typings references
• Updated all non-webpack examples to have a clean npm command as well as
change the tsconfig.json to include the app.ts when appropriate

Revision 21 - 2016-02-20

All chapters up to date with angular-2.0.0-beta.7

Changelog 734

Revision 20 - 2016-02-11

All chapters up to date with angular-2.0.0-beta.6 (see note below)

• “How Angular Works” Chapter
– Fixed Typo. Thanks @AndreaMiotto
– Added missing brackets in attributes on MyComponent - Thanks Németh T.

• “Forms” Chapter
– Grammar fix - Németh T.
– Added missing line of code in “Field coloring” - Németh T.

• “RxJs” Chapters
– Grammar fix - Németh T.

• Note: beta.4 and beta.5were replacedwith beta.6. See the angular 2 CHANGELOG¹⁶⁹

Revision 19 - 2016-02-04

All chapters up to date with angular-2.0.0-beta.3

Revision 18 - 2016-01-29

All chapters up to date with angular-2.0.0-beta.2

Revision 17 - 2016-01-28

• Added Testing Chapter

Revision 16 - 2016-01-14

• Added “How to Convert ng1 App to ng2” Chapter
• All chapters now up to date with angular-2.0.0-beta.1

• All package.json files pinned to specific versions
• “HTTP” Chapter

– Fixed typo - Thanks Ole S!
• “Built-in Components” Chapter

– Fixed ngIf typo
¹⁶⁹https://github.com/angular/angular/blob/master/CHANGELOG.md#200-beta5-2016-02-10

https://github.com/angular/angular/blob/master/CHANGELOG.md#200-beta5-2016-02-10
https://github.com/angular/angular/blob/master/CHANGELOG.md#200-beta5-2016-02-10

Changelog 735

Revision 15 - 2016-01-07

All chapters now up to date with angular-2.0.0-beta.0!

• “RxJS” Chapters
– Updated to angular-2.0.0-beta.0

• “HTTP” Chapter
– Updated to angular-2.0.0-beta.0

• Fixed line numbers for code that loads from files to match the line numbers on
file

• “HowAngular Works” Chapter - Fixed swapped LHS / RHS language. - Thanks,
Miroslav J.

Revision 14 - 2015-12-23

• “First App” Chapter
– Fixed typo on hello-world @Component - Thanks Matt D.
– Fixed typescript dependency in hello_world package.json

• “Forms Chapter”
– Updated to angular-2.0.0-beta.0

• “How Angular Works Chapter”
– Significant rewrite to make it clearer
– Updated to angular-2.0.0-beta.0

• “Routing Chapter”
– Significant rewrite to make it clearer
– Updated to angular-2.0.0-beta.0

Revision 13 - 2015-12-17

Angular 2 beta.0 is out!

• “First App” Chapter
– Updated reddit app to angular-2.0.0-beta.0

– Updated hello_world app to angular-2.0.0-beta.0

– Added Semantic UI¹⁷⁰ styles
• “Built-in Components” Chapter

– Updated built-in directives sample apps to angular-2.0.0-beta.0

– Added Semantic UI
¹⁷⁰http://semantic-ui.com

http://semantic-ui.com/
http://semantic-ui.com/

Changelog 736

Revision 12 - 2015-11-16

• “Routing” Chapter
– Fixed ROUTER_DIRECTIVES typo - Wayne R.

• “First App” Chapter
– Updated example to angular-2.0.0-alpha-46

– Fixed some bolding around NgFor to clarify the code example - Henrique
M.

– Fixed Duplicate identifier 'Promise'. errors due to a bad tsconfig.json
in angular2-reddit-base/ - Todd F.

– Fixed language typos caught by Steffen G.
– “Forms” Chapter

* Updated example to angular-2.0.0-alpha-46

· Fixes the method of subscribing to Observables in the “Form with
Events” section

* Fixed a few typos and language issues - Christopher C., Travis P.
– “TypeScript” Chapter

* Fixed some unclear language about enum - Frede H.
– “Built-in Components” Chapter

* Fixed a typo where [class] needed to be [ng-class] - Neal B.
– “How Angular Works” Chapter

* Fixed language typos - Henrique M.

Revision 11 - 2015-11-09

• Fixed explanation of TypeScript benefits - Thanks Don H!
• Fixed tons of typos found by Wayne R - Thanks Wayne!
• “How Angular Works” Chapter

– Fixed typos - Jegor U.
– Converted a component to use inputs/outputs - Jegor U.
– Fixed number to myNumber typo - Wayne R.

• “Built-in Components” Chapter
– Fixed language typos - Wayne R., Jek C., Jegor U.
– Added a tip-box explaining object keys with dashes - Wayne R.

Changelog 737

– Use controller view value for ng-style color instead of the form field value
- Wayne R.

• “Forms” Chapter
– Fixed language typos - Wayne R., Jegor U.

• “Data Architecture in Angular 2”
– Was accidentally part of “Forms” and is now promoted to an introductory
mini-chapter - Wayne R.

• “RxJS Pt 1.” Chapter
– Fixed language typos - Wayne R.

• “RxJS Pt 2.” Chapter
– Fixed Unicode problem - Birk S.
– Clarified language around combineLatest return value - Birk S.

• “Typescript” Chapter
– Fixed language typo - Travis P., Don H.

• “Routing” Chapter
– Fixed language typos - Jegor U., Birk S.

• “First App” Chapter
– Fixed link to ng_for - Mickey V.

• “HTTP” Chapter
– Fixed language typos - Birk S.
– Clarified ElementRef role in YouTubeSearchComponent

– Fixed link to RequestOptions - Birk S.

Revision 10 - 2015-10-30

• Upgraded Writing your First Angular2 Web Application chapter to angular-

2.0.0-alpha.44

• Upgraded Routing chapter to angular-2.0.0-alpha.44

• Fixed ‘pages#about’ on the rails route example. - Thanks Rob Y!

Revision 9 - 2015-10-15

• Added Routing Chapter

Changelog 738

Revision 8 - 2015-10-08

• Upgraded chapters 1-5 to angular-2.0.0-alpha.39

• properties and events renamed to inputs and outputs

• Fixed an issue in the First App chapter that said #newtitle bound to the value
of the input (it’s really binding to the Control object) - Danny L

• CSSClass renamed to NgClass

• ng-non-bindable is now built-in so you don’t need to inject it as a directive
• Updated the forms chapter as there were several changes to the forms API
• Fixed NgFor source url in First App chapter - Frede H.

Revision 7 - 2015-09-23

• Added HTTP Chapter
• Fixed For -> NgFor typo - Sanjay S.

Revision 6 - 2015-08-28

• Added RxJS Chapter Data Architecture with Observables - Part 1 : Services
• Added RxJS Chapter Data Architecture with Observables - Part 2 : View
Components

Revision 5 - 2015-08-01

• Finished built-in components chapter

Revision 4 - 2015-07-30

• Added built-in components chapter draft
• Added a warning about linewrapping of long URLs - Thanks Kevin B!
• Explained how annotations are bound to components on the First App chapter
- thanks Richard M. and others

• Copy typo fixes - thanks Richard M.!
• Fixed TypeScript using integer instead of number - Richard M. and Roel V.

Changelog 739

• Fixed “var nate =” listings require a comma to be a valid JS object - thanks Roel
V.

• Renamed a few “For” directive mentions to “NgFor” - thanks Richard M.
• Fixed type on “RedditArticle” - thanks Richard M.
• Explained how annotations are bound to components on the First App chapter
(thanks Richard M. and others)

• Typos and grammar improvements on First App chapter (thanks Kevin B)
• Typos and code improvements on How Angular Works (thanks Roel V.)

Revision 3 - 2015-07-21

• Added forms chapter

Revision 2 - 2015-07-15

• Updated For directive to NgFor accross all chapters and examples (templates
changed from *for= to *ng-for= as well)

• Changed the suggested static web server from http-server to live-server so
the execution command is valid both in OSX/Linux and Windows

• Changed the @Component’s properties property to match the latest AngularJS
2 format

• Updated angular2.dev.js bundle to latest version for all examples
• Updated typings folder with latest version for all examples

Revision 1 - 2015-07-01

Initial version of the book

	Table of Contents
	Book Revision
	Join our Discord Chat
	Vote for New Content (new!)
	Be notified of updates via Twitter
	Bug Reports
	We'd love to hear from you!
	Become A Technical Contributor - Free Updates for Life
	Special Thanks to Our Technical Contributors
	How to Read This Book
	Running Code Examples
	Angular CLI

	Code Blocks and Context
	Code Block Numbering

	A Word on Versioning
	Getting Help
	Emailing Us
	Chapter Overview

	Writing Your First Angular Web Application
	Simple Reddit Clone
	Getting started
	Node.js and npm
	TypeScript
	Browser

	Special instruction for Windows users
	Angular CLI
	Example Project

	Running the application
	Making a Component
	Importing Dependencies
	Component Decorators
	Adding a template with templateUrl
	Adding a template
	Adding CSS Styles with styleUrls
	Loading Our Component

	Adding Data to the Component
	Working With Arrays
	Using the User Item Component
	Rendering the UserItemComponent
	Accepting Inputs
	Passing an Input value

	Bootstrapping Crash Course
	declarations
	imports
	providers
	bootstrap

	Expanding our Application
	Adding CSS
	The Application Component
	Adding Interaction
	Adding the Article Component

	Rendering Multiple Rows
	Creating an Article class
	Storing Multiple Articles
	Configuring the ArticleComponent with inputs
	Rendering a List of Articles

	Adding New Articles
	Finishing Touches
	Displaying the Article Domain
	Re-sorting Based on Score

	Deployment
	Building Our App for Production
	Uploading to a Server
	Installing now

	Full Code Listing
	Wrapping Up
	Getting Help

	TypeScript
	Angular is built in TypeScript
	What do we get with TypeScript?
	Types
	Trying it out with a REPL

	Built-in types
	Classes
	Properties
	Methods
	Constructors
	Inheritance

	Utilities
	Fat Arrow Functions
	Template Strings

	Wrapping up

	How Angular Works
	Application
	The Navigation Component
	The Breadcrumbs Component
	The Product List Component

	How to Use This Chapter
	Product Model
	Components
	Component Decorator
	Component selector
	Component template
	Adding A Product
	Viewing the Product with Template Binding
	Adding More Products
	Selecting a Product
	Listing products using <products-list>

	The ProductsListComponent
	Configuring the ProductsListComponent @Component Options
	Component inputs
	Component outputs
	Emitting Custom Events
	Writing the ProductsListComponent Controller Class
	Writing the ProductsListComponent View Template
	The Full ProductsListComponent Component

	The ProductRowComponent Component
	ProductRowComponent Configuration
	ProductRowComponent template

	The ProductImageComponent Component
	The PriceDisplayComponent Component
	The ProductDepartmentComponent
	NgModule and Booting the App
	Booting the app

	The Completed Project
	Deploying the App
	A Word on Data Architecture

	Built-in Directives
	Introduction
	NgIf
	NgSwitch
	NgStyle
	NgClass
	NgFor
	Getting an index

	NgNonBindable
	Conclusion

	Forms in Angular
	Forms are Crucial, Forms are Complex
	FormControls and FormGroups
	FormControl
	FormGroup

	Our First Form
	Loading the FormsModule
	Reactive- vs. template-driven Forms
	Simple SKU Form: @Component Decorator
	Simple SKU Form: template
	Simple SKU Form: Component Definition Class
	Try it out!

	Using FormBuilder
	Reactive Forms with FormBuilder
	Using FormBuilder
	Using myForm in the view
	Try it out!

	Adding Validations
	Explicitly setting the sku FormControl as an instance variable
	Custom Validations

	Watching For Changes
	ngModel
	Wrapping Up

	Dependency Injection
	Injections Example: PriceService
	Dependency Injection Parts
	Playing with an Injector
	Providing Dependencies with NgModule
	Providers are the Key

	Providers
	Using a Class
	Using a Factory

	Dependency Injection in Apps
	More Resources

	HTTP
	Introduction
	Using @angular/common/http
	import from @angular/common/http

	A Basic Request
	Building the SimpleHttpComponent Component Definition
	Building the SimpleHttpComponent template
	Building the SimpleHttpComponent Controller
	Full SimpleHttpComponent

	Writing a YouTubeSearchComponent
	Writing a SearchResult
	Writing the YouTubeSearchService
	Writing the SearchBoxComponent
	Writing SearchResultComponent
	Writing YouTubeSearchComponent

	@angular/common/http API
	Making a POST request
	PUT / PATCH / DELETE / HEAD
	Custom HTTP Headers
	Summary

	Routing
	Why Do We Need Routing?
	How client-side routing works
	The beginning: using anchor tags
	The evolution: HTML5 client-side routing

	Writing our first routes
	Components of Angular routing
	Imports
	Routes
	Installing our Routes
	RouterOutlet using <router-outlet>
	RouterLink using [routerLink]

	Putting it all together
	Creating the Components
	HomeComponent
	AboutComponent
	ContactComponent
	Application Component
	Configuring the Routes

	Routing Strategies
	Running the application
	Route Parameters
	ActivatedRoute

	Music Search App
	First Steps
	The SpotifyService
	The SearchComponent
	Trying the search
	TrackComponent
	Wrapping up music search

	Router Hooks
	AuthService
	LoginComponent
	ProtectedComponent and Route Guards

	Nested Routes
	Configuring Routes
	ProductsModule

	Summary

	Data Architecture in Angular
	An Overview of Data Architecture
	Data Architecture in Angular

	Data Architecture with Observables - Part 1: Services
	Observables and RxJS
	Note: Some RxJS Knowledge Required
	Learning Reactive Programming and RxJS

	Chat App Overview
	Components
	Models
	Services
	Summary

	Implementing the Models
	User
	Thread
	Message

	Implementing UsersService
	currentUser stream
	Setting a new user
	UsersService.ts

	The MessagesService
	the newMessages stream
	the messages stream
	The Operation Stream Pattern
	Sharing the Stream
	Adding Messages to the messages Stream
	Our completed MessagesService
	Trying out MessagesService

	The ThreadsService
	A map of the current set of Threads (in threads)
	A chronological list of Threads, newest-first (in orderedthreads)
	The currently selected Thread (in currentThread)
	The list of Messages for the currently selected Thread (in currentThreadMessages)
	Our Completed ThreadsService

	Data Model Summary

	Data Architecture with Observables - Part 2: View Components
	Building Our Views: The AppComponent Top-Level Component
	The ChatThreadsComponent
	ChatThreadsComponent template

	The Single ChatThreadComponent
	ChatThreadComponent Controller and ngOnInit
	ChatThreadComponent template

	The ChatWindowComponent
	The ChatMessageComponent
	The ChatMessageComponent template

	The ChatNavBarComponent
	The ChatNavBarComponent @Component
	The ChatNavBarComponent template

	Summary

	Introduction to Redux with TypeScript
	Redux
	Redux: Key Ideas

	Core Redux Ideas
	What's a reducer?
	Defining Action and Reducer Interfaces
	Creating Our First Reducer
	Running Our First Reducer
	Adjusting the Counter With actions
	Reducer switch
	Action ``Arguments''

	Storing Our State
	Using the Store
	Being Notified with subscribe
	The Core of Redux

	A Messaging App
	Messaging App state
	Messaging App actions
	Messaging App reducer
	Trying Out Our Actions
	Action Creators
	Using Real Redux

	Using Redux in Angular
	Planning Our App
	Setting Up Redux
	Defining the Application State
	Defining the Reducers
	Defining Action Creators
	Creating the Store

	Providing the Store
	Bootstrapping the App
	The AppComponent
	imports
	The template
	The constructor
	Putting It All Together

	What's Next
	References

	Intermediate Redux in Angular
	Context For This Chapter
	Chat App Overview
	Components
	Models
	Reducers
	Summary

	Implementing the Models
	User
	Thread
	Message

	App State
	A Word on Code Layout
	The Root Reducer
	The UsersState
	The ThreadsState
	Visualizing Our AppState

	Building the Reducers (and Action Creators)
	Set Current User Action Creators
	UsersReducer - Set Current User
	Thread and Messages Overview
	Adding a New Thread Action Creators
	Adding a New Thread Reducer
	Adding New Messages Action Creators
	Adding A New Message Reducer
	Selecting A Thread Action Creators
	Selecting A Thread Reducer
	Reducers Summary

	Building the Angular Chat App
	The top-level AppComponent
	The ChatPage
	Container vs. Presentational Components

	Building the ChatNavBarComponent
	Redux Selectors
	Threads Selectors
	Unread Messages Count Selector

	Building the ChatThreadsComponent
	ChatThreadsComponent Controller
	ChatThreadsComponent template

	The Single ChatThreadComponent
	ChatThreadComponent template

	Building the ChatWindowComponent
	The ChatMessageComponent
	Setting incoming
	The ChatMessageComponent template

	Summary

	Advanced Components
	Styling
	View (Style) Encapsulation
	Shadow DOM Encapsulation
	No Encapsulation

	Creating a Popup - Referencing and Modifying Host Elements
	Popup Structure
	Using ElementRef
	Binding to the host
	Adding a Button using exportAs

	Creating a Message Pane with Content Projection
	Changing the Host's CSS
	Using ng-content

	Querying Neighbor Directives - Writing Tabs
	ContentTabComponent
	ContentTabsetComponent Component
	Using the ContentTabsetComponent

	Lifecycle Hooks
	OnInit and OnDestroy
	OnChanges
	DoCheck
	AfterContentInit, AfterViewInit, AfterContentChecked and AfterViewChecked

	Advanced Templates
	Rewriting ngIf - ngBookIf
	Rewriting ngFor - NgBookFor

	Change Detection
	Customizing Change Detection
	Zones
	Observables and OnPush

	Summary

	Testing
	Test driven?
	End-to-end vs. Unit Testing
	Testing Tools
	Jasmine
	Karma

	Writing Unit Tests
	Angular Unit testing framework
	Setting Up Testing
	Testing Services and HTTP
	HTTP Considerations
	Stubs
	Mocks
	HttpClient HttpTestingController
	TestBed.configureTestingModule and Providers
	Testing getTrack

	Testing Routing to Components
	Creating a Router for Testing
	Mocking dependencies
	Spies

	Back to Testing Code
	fakeAsync and advance
	inject
	Testing ArtistComponent's Initialization
	Testing ArtistComponent Methods
	Testing ArtistComponent DOM Template Values

	Testing Forms
	Creating a ConsoleSpy
	Installing the ConsoleSpy
	Configuring the Testing Module
	Testing The Form
	Refactoring Our Form Test

	Testing HTTP requests
	Testing a POST
	Testing DELETE
	Testing HTTP Headers
	Testing YouTubeSearchService

	Conclusion

	Converting an AngularJS 1.x App to Angular
	Peripheral Concepts
	What We're Building
	Mapping AngularJS 1 to Angular
	Requirements for Interoperability
	The AngularJS 1 App
	The ng1-app HTML
	Code Overview
	ng1: PinsService
	ng1: Configuring Routes
	ng1: HomeController
	ng1: / HomeController template
	ng1: pin Directive
	ng1: pin Directive template
	ng1: AddController
	ng1: AddController template
	ng1: Summary

	Building A Hybrid
	Hybrid Project Structure
	Bootstrapping our Hybrid App
	What We'll Upgrade
	A Minor Detour: Typing Files
	Writing ng2 PinControlsComponent
	Using ng2 PinControlsComponent
	Downgrading ng2 PinControlsComponent to ng1
	Adding Pins with ng2
	Upgrading ng1 PinsService and $state to ng2
	Writing ng2 AddPinComponent
	Using AddPinComponent
	Exposing an ng2 service to ng1
	Writing the AnalyticsService
	Downgrade ng2 AnalyticsService to ng1
	Using AnalyticsService in ng1

	Summary
	References

	NativeScript: Mobile Applications for the Angular Developer
	What is NativeScript?
	Where NativeScript Differs from Other Popular Frameworks
	What are the System and Development Requirements for NativeScript?

	Creating your First Mobile Application with NativeScript and Angular
	Adding Build Platforms for Cross Platform Deployment
	Building and Testing for Android and iOS
	Installing JavaScript, Android, and iOS Plugins and Packages

	Understanding the Web to NativeScript UI and UX Differences
	Planning the NativeScript Page Layout
	Adding UI Components to the Page
	Styling Components with CSS

	Developing a Geolocation Based Photo Application
	Creating a Fresh NativeScript Project
	Creating a Multiple Page Master-Detail Interface
	Creating a Flickr Service for Obtaining Photos and Data
	Creating a Service for Calculating Device Location and Distance
	Including Mapbox Functionality in the NativeScript Application
	Implementing the First Page of the Geolocation Application
	Implementing the Second Page of the Geolocation Application

	Try it out!
	NativeScript for Angular Developers

	Changelog
	Revision 76 - 2020-02-12
	Revision 75 - 2019-12-13
	Revision 74 - 2019-05-30
	Revision 73 - 2019-01-08
	Revision 72 - 2018-12-12
	Revision 71 - 2018-10-23
	Revision 70 - 2018-09-13
	Revision 69 - 2018-09-08
	Revision 68 - 2018-05-08
	Revision 67 - 2018-01-17
	Revision 66 - 2017-11-14
	Revision 65 - 2017-11-01
	Revision 64 - 2017-09-15
	Revision 63 - 2017-08-02
	Revision 62 - 2017-06-23
	Revision 61 - 2017-05-24
	Revision 60 - 2017-04-27
	Revision 59 - 2017-04-07
	Revision 58 - 2017-03-24
	Revision 57 - 2017-03-23
	Revision 56 - 2017-03-22
	Revision 55 - 2017-03-17
	Revision 54 - 2017-03-10
	Revision 53 - 2017-03-01
	Revision 52 - 2017-02-22
	Revision 51 - 2017-02-14
	Revision 50 - 2017-02-10
	Revision 49 - 2017-01-18
	Revision 48 - 2017-01-13
	Revision 47 - 2017-01-06
	Revision 46 - 2017-01-03
	Revision 45 - 2016-12-05
	Revision 44 - 2016-11-17
	Revision 43 - 2016-11-08
	Revision 42 - 2016-10-14
	Revision 41 - 2016-09-28
	Revision 40 - 2016-09-20
	Revision 39 - 2016-09-03
	Revision 38 - 2016-08-29
	Revision 37 - 2016-08-02
	Revision 36 - 2016-07-20
	Revision 35 - 2016-06-30
	Revision 34 - 2016-06-15
	Revision 33 - 2016-05-11
	Revision 32 - 2016-05-06
	Revision 31 - 2016-04-28
	Revision 30 - 2016-04-20
	Revision 29 - 2016-04-08
	Revision 28 - 2016-04-01
	Revision 27 - 2016-03-25
	Revision 26 - 2016-03-24
	Revision 25 - 2016-03-21
	Revision 24 - 2016-03-10
	Revision 23 - 2016-03-04
	Revision 22 - 2016-02-24
	Revision 21 - 2016-02-20
	Revision 20 - 2016-02-11
	Revision 19 - 2016-02-04
	Revision 18 - 2016-01-29
	Revision 17 - 2016-01-28
	Revision 16 - 2016-01-14
	Revision 15 - 2016-01-07
	Revision 14 - 2015-12-23
	Revision 13 - 2015-12-17
	Revision 12 - 2015-11-16
	Revision 11 - 2015-11-09
	Revision 10 - 2015-10-30
	Revision 9 - 2015-10-15
	Revision 8 - 2015-10-08
	Revision 7 - 2015-09-23
	Revision 6 - 2015-08-28
	Revision 5 - 2015-08-01
	Revision 4 - 2015-07-30
	Revision 3 - 2015-07-21
	Revision 2 - 2015-07-15
	Revision 1 - 2015-07-01

